Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle
Abstract
:1. Introduction
2. Methodology
2.1. Lock-in Amplifier-Based Impedance Measurement System
2.2. Electrical Impedance Measurement of Porcine Tissues
3. Results and Discussion
3.1. Accuracy of LIA-Based Impedance Measurement System
3.2. Electrical Impedance Measurement of Pork Tissue
3.3. Impedance Monitoring of the Monopolar Injection Needle Position
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, S.D.; Chang, B.K.; Moon, S.H. Ultrasound-guided intervention in cervical spine. J. Korean Orthop. Assoc. 2015, 50, 77–92. [Google Scholar] [CrossRef]
- Na, K.S. Ultrasound-guided intra-articular injections. Korean. J. Med. 2015, 89, 654–662. [Google Scholar] [CrossRef]
- Meheux, C.J.; McCulloch, P.C.; Lintner, D.M.; Varner, K.E.; Harris, J.D. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: A systematic review. Arthroscopy 2016, 32, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Sethi, P.M.; Kingston, S.; Elattrache, N. Accuracy of anterior intra-articular injection of the glenohumeral joint. Arthroscopy 2005, 21, 77–80. [Google Scholar] [CrossRef]
- Padiyath, A.; Fontenot, E.E.; Abraham, B.P. Removal of a retained intracardiac radiolucent guidewire fragment using an Atrieve™ vascular snare suing combined fluoroscopy and transesophageal echocardiography guidance in an infant. Ann. Pediatr. Cardiol. 2017, 10, 65–68. [Google Scholar]
- Gu, W.J.; Wu, X.D.; Wang, F.; Ma, Z.L.; Gu, X.P. Ultrasound guidance facilitates radial artery catheterization: A meta-analysis with trial sequential analysis of randomized controlled trials. Chest 2016, 149, 166–179. [Google Scholar] [CrossRef]
- Park, K.D.; Lee, W.Y.; Nam, S.H.; Kim, M.; Park, Y. Ultrasound-guided selective nerve root block versus fluoroscopy-guided interlaminar epidural block for the treatment of radicular pain in the lower cervical spine: A retrospective comparative study. J. Ultrasound 2019, 22, 167–177. [Google Scholar] [CrossRef]
- Park, K.D.; Kim, T.K.; Lee, W.Y.; Ahn, J.K.; Koh, S.H.; Park, Y.B. Ultrasound-guided versus fluoroscopy-guided caudal epidural steroid injection for the treatment of unilateral lower lumbar radicular pain: Case-controlled, retrospective, comparative study. Medicine 2015, 94, e2261. [Google Scholar] [CrossRef]
- Furtado, R.N.V.; Pereira, D.F.; da Luz, K.R.; dos Santos, M.F.; Konai, M.S.; Mitraud, S.A.V.; Rosenfeld, A.; Fernandes, A.R.C.; Natour, J. Effectiveness of imaging-guided intra-articular injection: A comparison study between fluoroscopy and ultrasound. Rev. Bras. Reumatol. 2013, 53, 476–482. [Google Scholar] [CrossRef]
- McGuirt, D.; Mazal, J.; Roger, T.; Faranesh, A.Z.; Schenke, W.; Stine, A.; Grant, L.; Lederman, R.J. X-ray fused with magnetic resonance imaging to guide endomyocardial biopsy of a right ventricular mass. ASRT 2016, 87, 622–626. [Google Scholar]
- Roemer, F.W.; van Holsbeeck, M.; Genant, H.K. Musculoskeletal ultrasound in rheumatology: A radiologic perspective. Arthritis Care Res. 2015, 53, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Lakhtakia, S.; Ramchandani, M.; Galasso, D.; Gupta, R.; Venugopal, S.; Kalpala, R.; Reddy, D.N. EUS-guided radiofrequency ablation for management of pancreatic insulinoma by using a novel needle electrode (with videos). Gastrointest. Endosc. 2016, 83, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yoon, H.S.; Xuan, X.; Park, J.Y.; Paik, S.J.; Allen, M.G. A patch type non-enzymatic biosensor based on 3D SUS micro-needle electrode array for minimally invasive continuous glucose monitoring. Sens. Actuator B Chem. 2016, 222, 1144–1151. [Google Scholar] [CrossRef]
- Rubin, D.I. Needle electromyography: Basic concepts. Handb. Clin. Neurol. 2019, 160, 243–256. [Google Scholar] [PubMed]
- Sharp, J.; Bouazza-Marouf, K.; Noronha, D.; Gaur, A. Tissue type determination by impedance measurement: A bipolar and monopolar comparison. Saudi J. Anaesth. 2017, 11, 15–20. [Google Scholar] [PubMed] [Green Version]
- Yun, J.; Kang, G.; Park, Y.; Kim, H.W.; Cha, J.J.; Lee, J.H. Electrochemical impedance spectroscopy with interdigitated electrodes at the end of hypodermic needle for depth profiling of biotissues. Sens. Actuator B Chem. 2016, 237, 984–991. [Google Scholar] [CrossRef]
- Halonen, S.; Kari, J.; Ahonen, P.; Kronström, K.; Hyttinen, J. Real-time bioimpedance-based biopsy needle can identify tissue type with high spatial accuracy. Ann. Biomed. Eng. 2019, 47, 836–851. [Google Scholar] [CrossRef]
- Gordon, M.P.J.; Chandler, N.P. Electronic apex locators. Int. Endod. J. 2004, 37, 425–437. [Google Scholar] [CrossRef]
- Kalvøy, H.; Frich, L.; Grimnes, S.; Martinsen, Ø.G.; Hol, P.K.; Stubhaug, A. Impedance-based tissue discrimination for needle guidance. Physiol. Meas. 2009, 30, 129. [Google Scholar] [CrossRef]
- Yun, J.; Kim, H.W.; Lee, J.H. Improvement of depth profiling into biotissues using micro electrical impedance spectroscopy on a needle with selective passivation. Sensors 2016, 16, 2207. [Google Scholar] [CrossRef]
- Yang, K.; Abbasi, Q.H.; Chorpra, N.; Munoz, M.; Hao, Y.; Alomainy, A. Effects of non-flat interfaces in human skin tissues on the in-vivo Tera-Hertz communication channel. Nano Commun. Netw. 2015, 8, 16–24. [Google Scholar] [CrossRef]
- Trainito, C. Study of Cell Membrane Permeabilization Induced by Pulsed Electric Field-Electrical Modeling and Characterization on Biochip. Ph.D. Thesis, Univerist’ Paris-Saclay, Saint-Aubin, France, 2015. [Google Scholar]
- Bera, K.T. Biolelectrical impedance methods for noninvasive health monitoring. J. Med. Eng. 2014, 2014, 381251. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, W.M.; Kim, K.; Jeong, W.I.; Seo, J.B.; Park, I. Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination. Sci. Rep. 2018, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Trebbels, D.; Fellhauer, F.; Jugl, M.; Haimerl, G.; Min, M.; Zengerle, R. Online tissue discrimination for transcutaneous needle guidance applications using broadband impedance spectroscopy. IEEE Trans. Biomed. Eng. 2012, 59, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Geng, Y.; Zhang, X.; Chen, D.; Cai, Z.; Wang, M.; Zhu, Z.; Wang, Z. A wide-band digital lock-in amplifier and its application in microfluidic impedance measurement. Sensors 2019, 19, 3519. [Google Scholar] [CrossRef]
- Li, N.; Wang, W.; Xu, H.; Yu, H.; Diao, J.; Li, D.D.U. Wide-bandwidth biological impedance spectroscopy system based on the digital lock-in technique. Spectrosc. Lett. 2013, 46, 476–482. [Google Scholar] [CrossRef]
- Cifuentes, A.; Marin, E. Implementation of a field programmable gate array-based lock-in amplifier. Measurement 2015, 69, 31–41. [Google Scholar] [CrossRef]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.-C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2016, 25, 92–98. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, Ø.G. Bioimpedance and Bioelectricity, Basics; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Abbasi, M.A.; Kim, T.; Park, K.D.; Cho, S. Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle. Sensors 2019, 19, 4614. https://doi.org/10.3390/s19214614
Kim J, Abbasi MA, Kim T, Park KD, Cho S. Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle. Sensors. 2019; 19(21):4614. https://doi.org/10.3390/s19214614
Chicago/Turabian StyleKim, Junsub, Muhammad Aitzaz Abbasi, Taehee Kim, Ki Deok Park, and Sungbo Cho. 2019. "Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle" Sensors 19, no. 21: 4614. https://doi.org/10.3390/s19214614
APA StyleKim, J., Abbasi, M. A., Kim, T., Park, K. D., & Cho, S. (2019). Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle. Sensors, 19(21), 4614. https://doi.org/10.3390/s19214614