Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. State of the Field
2.2. System Overview
2.2.1. Acquisition Interface
2.2.2. Sensors Placement
User-Centered Surface Electromyography (EMG) Placement Calibration
2.2.3. One-Bit Word Generator
2.2.4. Muscle Fiber Conduction Velocity (MFCV) Control Unit
2.2.5. Bluetooth Management Unit
2.2.6. Synchro Unit
2.3. Field Programmable Gate Array (FPGA) Implementation Details
- Four EMG (two surface electrodes per leg), sampling rate 2 kSa/s with a resolution of 16 bits.
- Two Footswitches signal (one per foot), sampling rate 2 kSa/s with a resolution of 16 bits. The footswitch bio signal can assume 11 possible values, as shown in the second column of Table 2.
- START/STOP are used to manage the functioning of the whole architecture;
- Reset handles the zeroing of all the registers and FSMs;
- 8M_clk is the chosen 8 MHz system clock. It is derived by the embedded 50 MHz FPGA clock (50M_clk). The 8M_clk is used to synchronize all internal activity;
- SYNi – i = 1…Nch, with NCh number of monitored EMG channels (four in our application) are the 2 kHz clocks that manage the inputs sampling rate. This clock is also derived by the 50M_clk.
2.3.1. Identifier Block
2.3.2. Switch Control Unit
2.3.3. One-Bit Word Generator Block
2.3.4. θ-Computing Block
INITIAL iNEB-MAX← ‘0’,i←‘0’,j←‘0’; NEBMAX←‘0’,NEB ← ‘0’; #Init Settings
WHILE (i<602)
i← i+1;
WHILE (j<602) # NEB VALUE DEFINITION
IF (REGA[j]= REGB[j]) # XNOR Comparison BIT-by-BIT
NEB ← NEB+1; # NEB accumulator
j←j+1; # Registers Shifting
ELSE
j←j+1; # Registers Shifting
END
END
IF(NEB[i]> NEBMAX) # MAX NEB Comparison
iNEB-MAX ← i; # ineb_max Assignment
NEBMAX ← NEB; # New MAX NEB Assignment
REGA← “0” & REGA[1÷601]; # Shift Operation on REG b
j← ‘0’; # j index Initialization
NEB ← ‘0’; # Temp var: NEB Initialization
ELSE
REGA← “0” & REGA[1÷601]; # Shift Operation on REG b
j← ‘0’; # j index Initialization
NEB ← ‘0’; # Temp var: NEB Initialization
END
REGB← REGB; # Reg A is Unaltered
END
READ(iNEB-MAX) # Read the estimated time delay (θ)
2.3.5. Bluetooth Manager Unit
3. Results
3.1. In Vivo MFCV Measures: Gait
3.2. In Vivo MFCV Measures: Fatigue
3.3. FPGA Resources Utilization and Timing Requirements
3.4. Power Consumption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Solanas, A.; Patsakis, C.; Conti, M.; Vlachos, I.S.; Ramos, V.; Falcone, F.; Postolache, O.; Perez-martinez, P.A.; Di Pietro, R.; Perrea, D.N.; et al. Smart health: A context-aware health paradigm within smart cities. IEEE Commun. Mag. 2014, 52, 74–81. [Google Scholar] [CrossRef]
- Castillejo, P.; Martinez, J.-F.; Rodriguez-Molina, J.; Cuerva, A. Integration of wearable devices in a wireless sensor network for an eHealth application. IEEE Wirel. Commun. 2013, 20, 38–49. [Google Scholar] [CrossRef]
- Dixon, A.M.R.; Allstot, E.G.; Gangopadhyay, D.; Allstot, D.J. Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Drost, G.; Stegeman, D.F.; van Engelen, B.G.; Zwarts, M.J. Clinical applications of high-density surface EMG: A systematic review. J. Electromyogr. Kinesiol. 2006, 16, 586–602. [Google Scholar] [CrossRef] [PubMed]
- Suda, E.Y.; Gomes, A.A.; Butugan, M.K.; Sacco, I.C. Muscle fiber conduction velocity in different gait phases of early and late-stage diabetic neuropathy. J. Electromyogr. Kinesiol. 2016, 30, 263–271. [Google Scholar] [CrossRef] [PubMed]
- De Venuto, D.; Annese, V.F.; de Tommaso, M.; Vecchio, E.; Sangiovanni Vincentelli, A.L. Combining EEG and EMG Signals in a Wireless System for Preventing Fall in Neurodegenerative Diseases. Ambient Assisted Living. Biosyst. Biorobot. 2015, 11. [Google Scholar] [CrossRef]
- Allen Matti, D.; Choi, I.H.; Kimpinski, K.; Doherty, T.J.; Rice, C.L. Motor unit loss and weakness in association with diabetic neuropathy in humans. Muscle Nerve 2013, 48, 298–300. [Google Scholar] [CrossRef]
- Koutsos, E.; Cretu, V.; Georgiou, P. A muscle fibre conduction velocity tracking ASIC for local fatigue monitoring. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1119–1128. [Google Scholar] [CrossRef]
- Rainoldi, A.; Gazzoni, M.; Melchiorri, G. Differences in myoelectric manifestations of fatigue in sprinters and long distance runners. Physiol. Meas. 2008, 29, 331. [Google Scholar] [CrossRef]
- Farina, D.; Merletti, R. Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 2004, 42, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Fiorito, A.; Rao, S.; Merletti, R. Analogue and digital instruments for non-invasive estimation of muscle fibre conduction velocity. Med. Biol. Eng. Comput. 1994, 32, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Rabotti, C.; Mischi, M. Towards Real-Time Estimation of Muscle-Fiber Conduction Velocity Using Delay-Locked Loop. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Sbriccoli, P.; Sacchetti, M.; Felici, F.; Gizzi, L.; Lenti, M.; Scotto, A.; De Vitoabc, G. Non-invasive assessment of muscle fiber conduction velocity during an incremental maximal cycling test. J. Electromyogr. Kinesiol. 2009, 19, e380–e386. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R.; Nazzaro, M.; Caruso, I. Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 2001, 20, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Annese, V.F.; De Venuto, D. FPGA based architecture for fall-risk assessment during gait monitoring by synchronous EEG/EMG. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 116–121. [Google Scholar] [CrossRef]
- Annese, V.F.; De Venuto, D. Gait analysis for fall prediction using EMG triggered movement related potentials. In Proceedings of the 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Naples, Italy, 21–23 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, D.; Koutsos, E.; Georgiou, P. Comparison of sEMG bit-stream modulators for cross-correlation based muscle fatigue estimation. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 838–841. [Google Scholar] [CrossRef]
- Taborri, J.; Rossi, S.; Palermo, E.; Patanè, F.; Cappa, P. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network. Sensors 2014, 14, 16212–16234. [Google Scholar] [CrossRef] [PubMed]
- De Venuto, D.; Ohletz, M.J.; Ricco, B. Testing of analogue circuits via (standard) digital gates. In Proceedings of the International Symposium on Quality Electronic Design, San Jose, CA, USA, 18–21 March 2002; pp. 112–119. [Google Scholar] [CrossRef]
- Annese, V.F.; de Venuto, D. The truth machine of involuntary movement: FPGA based cortico-muscular analysis for fall prevention. In Proceedings of the 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, UAE, 7–10 December 2015; pp. 553–558. [Google Scholar] [CrossRef]
- Hawayek, S.; Hargrove, C.; BouSaba, N.A. Real-time bluetooth communication between an FPGA based embedded system and an Android phone. In Proceedings of the 2013 Proceedings of IEEE Southeastcon, Jacksonville, FL, USA, 4–7 April 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Schmitz, J.P.J.; van Dijk, P.A.; Hilbers, P.A.J.; Nicolay, K.; Jeneson, J.A.L.; Stegeman, D.F. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling. Eur. J. Appl. Physiol. 2012, 112, 1593–1602. [Google Scholar] [CrossRef] [PubMed][Green Version]
- PowerPlay Power Analyzer User Guide. Available online: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qts_qii53013.pdf (accessed on 14 October 2019).
- De Venuto, D.; Ohletz, M.J.; Riccò, B. Digital Window Comparator DfT Scheme for Mixed-Signal ICs. J. Electron. Test. 2002, 18, 121. [Google Scholar] [CrossRef]
FSR Sensor | Position | Voltage in Close Mode (V) |
---|---|---|
H | Heel | 1.00 |
M5 | Fifth Metatarsus | 0.50 |
M1 | First Metatarsus | 0.25 |
A | Big Toe | 0.125 |
Gait Phase | Footswitches Voltage (V) | Threshold (V) |
---|---|---|
P6 – Midstance | M1 + M5 + H → 1.75 | 1.575 |
A + M1 + M5 + H → 1.875 | ||
P5- Loading Response | A + M5 + H → 1.375 | 1.125 |
M5 + H → 1.25 | ||
M1 + H → 1.5 | ||
P4- Contact | H → 1 | 0.9 |
P3- Propulsion | M1 + M5→ 0.75 | 0.675 |
A + M1 + M5→ 0.875 | ||
P2- Pre-Swing | A + M1 → 0.625 | 0.113 |
A + M5 → 0.375 | ||
P1- Swing | All sensors in OPEN mode | 0 |
Gait Phase | Threshold (V) |
---|---|
P6 – Midstance | Gastrocnemius, Soleus |
P5- Loading Response | Adductor, Peroneal, Tibialis rear |
P4- Contact | Quadriceps, Tibialis ant., Gluteus |
P3- Propulsion | Tibial rear, Peroneal, Finger flexors |
P2- Pre-Swing | Adductor, Femoral Rectus |
P1- Swing | Tibialis, Quadriceps |
Static Power | Power Dissipation (mW) | Operative Conditions |
Thermal Power | 416.6 | VCCaux = 2.5 V |
Leakage Power | 10.5 | VCore = 1.1 V |
I/O Management | 25.5 | VCCaux = 2.5 V |
Dynamic Power | Power Dissipation (mW) | Operative Conditions |
ADC | 1.25 | VCCaux= 2.5 V - 2000 cycles @2 kHz |
PLL Unit | 11.55 | VCCPLL = 2.5 V |
I/O dynamic Management | 3.6 | VCore = 1.1 V 603 cycles@2 kHz and 362494 cycles@8 MHz |
Register cells | 1.04 | |
Combinational blocks | 0.04 | |
Memory 10kb | 11.12 |
Parameters\Work | This Work | [8] | [11] | [12] | |
---|---|---|---|---|---|
Platform | EMG Footswitch FPGA | EMG ASIC | EMG μC | EMG Force Controlled Chair PC | |
Applicability | OL 1 | ✔ | ✔ | ✘ | ✘ |
Clin 2 | ✔ | ✔ | ✔ | ✔ | |
EMG Stimulation | Voluntary | Voluntary | Electrical | Voluntary | |
Involved Limb | Leg | Arm | Arm | Arm | |
Num. of electrodes | 4 | 2 | 8 | 64 (array) | |
Positioning Assistance | ✔ | ✘ | ✘ | ✘ | |
Computing Method | Single XNOR cross-correlation | On-going cross-correlation | Cross-correlation | Delay-locked loop (DLL) | |
Timing 3 | Real-time | Real-time | On-line computed | On-line computed | |
ϑ Resolution (ms@fclk) 4 | 0.5 ms 2 kHz | 0.5 ms @2 kHz | 50 ms @1 kHz | 1 ms @1 kHz | |
Application | Fatigue OL MFCV Monitoring | Fatigue | MFCV Monitoring | MFCV Monitoring |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Venuto, D.; Mezzina, G. Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring. Sensors 2019, 19, 4594. https://doi.org/10.3390/s19204594
De Venuto D, Mezzina G. Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring. Sensors. 2019; 19(20):4594. https://doi.org/10.3390/s19204594
Chicago/Turabian StyleDe Venuto, Daniela, and Giovanni Mezzina. 2019. "Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring" Sensors 19, no. 20: 4594. https://doi.org/10.3390/s19204594
APA StyleDe Venuto, D., & Mezzina, G. (2019). Field Programmable Gate Array-Embedded Platform for Dynamic Muscle Fiber Conduction Velocity Monitoring. Sensors, 19(20), 4594. https://doi.org/10.3390/s19204594