Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methods
2.2.1. Proximal Soil Sensing of Grassland Soil
2.2.2. UAV-Based Remote Sensing of Grassland Biomass
- Reflectance (R) of red, green, and blue (, , ),
- Hue,
- Saturation,
- Value,
- Normalized difference vegetation index,
- Visible atmospheric resistant index,
2.2.3. Reference Sampling and Laboratory Analysis
- To represent extreme values of the target parameter,
- to be spatially homogeneous,
- to be well distributed throughout the area of investigation.
2.2.4. Data Analysis
Spatial Data Alignment and Visualization
Analysis of Spatial Variability and Spatial Interpolation by Geostatistics
Outlier Removal by Spatial Cross-Validation
Calibration of Sensor Data
Modeling of Growth Response by Boundary-Line Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Correlation Between Grassland Biomass and Multi-Spectral Indices
3.2. Spatial Variability of Grassland Biomass, pH, and ECa
3.3. Relationship Between ECa, pH, and Grassland Biomass
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Vitti, C.; Langella, G.; Terribile, F.; Venezia, A. A Combined Approach of Sensor Data Fusion and Multivariate Geostatistics for Delineation of Homogeneous Zones in an Agricultural Field. Sensors 2017, 17, 2794. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L.; Balzarini, M.; Angelini, H. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil Sci. 2013, 93, 205–218. [Google Scholar] [CrossRef]
- Xu, H.-W.; Wang, K.; Bailey, J.; Jordan, C.; Withers, A. Temporal stability of sward dry matter and nitrogen yield patterns in a temperate grassland. Pedosphere 2016, 16, 735–744. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Moral, F.J.; Terrón, J.M.; Marques da Silva, J.R. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Geypens, M.; Vanongeval, L.; Vogels, N.; Meykens, J. Spatial Variability of Agricultural Soil Fertility Parameters in a Gleyic Podzol of Belgium. Precis. Agric. 1999, 1, 319–326. [Google Scholar] [CrossRef]
- Bernardi, A.C.C.; Bettiol, G.M.; Ferreira, R.P.; Santos, K.E.L.; Rabello, L.M.; Inamasu, R.Y. Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precis. Agric. 2016, 17, 737–752. [Google Scholar] [CrossRef][Green Version]
- Wang, D.; Xin, X.; Shao, Q.; Brolly, M.; Zhu, Z.; Chen, J. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors 2017, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.M.; Shahidian, S.; Marques da Silva, J. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture. Precis. Agric. 2017, 18, 245–263. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; de Carvalho, M. A Holistic Approach to the Evaluation of the Montado Ecosystem Using Proximal Sensors. Sensors 2018, 18, 570. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Watson, C.; Berendonk, C.; Becker, R.; Wrage-Mönnig, N.; Wichern, F. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions. Sensors 2017, 17, 1483. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; Andújar, D. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 2019, 19, 535. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, X.; Qui, J.; Li, J.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.; Yu, H.; Xu, B. Remote Sensing-Based Biomass Estimation and its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Xu, D.; Guo, X. Some insights on grassland health assessment based on remote sensing. Sensors 2015, 15, 3070–3089. [Google Scholar] [CrossRef]
- Moral, F.J.; Serrano, J.M. Using low cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures. Precis. Agric. 2019, 20, 1000–1014. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T. Soil electrical conductivity as a crop productivitymeasure for claypan soils. J. Prod. Agric. 1999, 12, 607–617. [Google Scholar] [CrossRef]
- Luchiari, A.; Shanahan, J.; Francis, D.; Schlemmer, M.; Schepers, J.; Liebig, M. Strategies for establishing management zones for site specific nutrient management. In Proceedings of the 5th International Conference on Precision Agriculture, Madison, WI, USA, 16–19 July 2001. [Google Scholar]
- Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems. Agron. J. 2003, 95, 483–495. [Google Scholar] [CrossRef]
- Soil Map of Germany. Bodenübersichtskarte der Bundesrepublik Deutschland 1:200.000 (BÜK200). Available online: https://www.bgr.bund.de/DE/Themen/Boden/Projekte/Informationsgrundlagen-laufend/BUEK200/BUEK200.html (accessed on 11 June 2019).
- Lund, E.D.; Adamchuk, V.I.; Collings, K.L.; Drummond, P.E.; Christy, C.D. Development of soil pH and lime requirementmaps using on-the-go soil sensors. In Proceedings of the Precision Agriculture: Papers from the Fifth European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005. [Google Scholar]
- Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH Mapping with an On-The-Go Sensor. Sensors 2011, 11, 573–598. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Lück, E.; Dabas, M.; Domsch, H. Comparison of instruments for geoelectrical soil mapping at the field scale. Near Surf. Geophys. 2009, 7, 179–190. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Viscarra Rossel, R.A.; Marx, D.B.; Samal, A.K. Using targeted sampling to process multivariate soil sensing data. Geoderma 2011, 163, 63–73. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Wiley: Chichester, UK, 2007; p. 315. [Google Scholar]
- Christakos, G.; Bogaert, P.; Serre, M. Temporal GIS. Advanced Functions for Field-Based Applications; Springer: Berlin, Germany, 2002. [Google Scholar]
- Webb, R.A. Use of the boundary line in analysis of biological data. J. Hortic. Sci. Biotechnol. 1972, 47, 309–319. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G.J. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Kaiser, M.S.; Speckman, P.L.; Jones, J.R. Statistical models for limiting nutrient relations in inland water. J. Am. Stat. Assoc. 1994, 89, 410–423. [Google Scholar] [CrossRef]
- Lark, R.M.; Milne, A.E. Boundary line analysis of the effect of water-filled pore space on nitrous oxide emission from cores of arable soil. Eur. J. Soil. Sci. 2016, 67, 148–159. [Google Scholar] [CrossRef]
- Thomson, J.D.; Weiblen, G.; Thomson, B.A. Untangling multiple factors in spatial distributions: Lilies, gophers and rocks. Ecol. 1996, 77, 1698–1715. [Google Scholar] [CrossRef]
- Cade, B.S.; Terrell, J.W.; Schroeder, R.L. Estimating effects of limiting factors with regression quantiles. Ecology 1999, 80, 311–323. [Google Scholar] [CrossRef]
- Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Chen, J.; Gu, S.; Shen, M.; Tang, Y.; Matsushita, B. Estimating aboveground biomass of grassland having a high canopy cover: An exploratory analysis of in situ hyperspectral data. Int. J. Remote Sens. 2009, 30, 6497–6517. [Google Scholar] [CrossRef]
- Gebbers, R. Fehleranalyse im System der Ortsspezifischen Grunddüngung. Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI, 474; Leibniz-Inst. für Agrartechnik Potsdam-Bornim eV: Potsdam, Germany, 2008. [Google Scholar]
- MLUV. Landnutzung ändert Böden—Steckbriefe Brandenburger Böden. Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg (MLUV); Landesvermessung und Geobasisinformation Brandenburg: Frankfurt, Germany, 2011. [Google Scholar]
- Walker, D.B.; Haugen-Kozyra, K.; Wang, C. Effects of Long-term Cultivation on a Morainal Landscape in Alberta, Canada. In Proceedings of the Third International Conference on Precision Agriculture, Madison, WI, USA, 23–26 June 1996. [Google Scholar]
- Cade, B.S.; Guo, Q. Estimating effects of constraints on plant performance with regression quantiles. Oikos 2000, 91, 245–254. [Google Scholar] [CrossRef]
- Van Dorp, J.R.; Kotz, S. Generalized trapezoidal distributions. Metrika 2003, 58, 85–97. [Google Scholar] [CrossRef]
- Schmidt, L.; Märtin, B. Produktionsanleitung und Richtwerte für den Anbau von Luzerne und Luzernegras; Landwirtschaftsausstellung der DDR: Markkleeberg, Germany, 1978. [Google Scholar]
- Kreil, W.; Simon, W.; Wojahn, E. Futterpflanzenbau, Empfehlungen, Richtwerte, Normative. Band 2—Ackerfutter; VEB Deutscher Landwirtschaftsverlag: Berlin, Germany, 1983. [Google Scholar]
- Bundessortenamt. Beschreibende Sortenliste, Futtergräser, Esparsette, Klee, Luzerne; Bundessortenamt: Hannover, Germany, 2009. [Google Scholar]
- McBratney, A.B.; Minasny, B.; Whelan, B.M. Obtaining ‘useful’ high-resolution soil data from proximally-sensed electrical conductivity/resistivity (PSEC/R) surveys. Precis. Agric. 2005, 5, 503–510. [Google Scholar]
- Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. Adv. Agron. 2011, 113, 237–282. [Google Scholar]
- Corwin, D.L.; Lesch, S. Application of Soil Electrical Conductivity to Precision Agriculture. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Lück, E.; Spangenberg, U.; Rühlmann, J. Comparison of different EC-mapping sensors. In Proceedings of the Precision agriculture `09, 7th European Conference on Precision Agriculture, Wageningen, The Netherlands, 6–8 July 2009. [Google Scholar]
- Cousin, I.; Besson, A.; Bourennane, H.; Pasquier, C.; Nicoullaud, B.; King, D.; Richard, G. From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. C. R. Geosci. 2009, 341, 859–867. [Google Scholar] [CrossRef]
- Besson, A.; Cousin, I.; Bourennane, H.; Nicoullaud, B.; Pasquier, C.; Richard, G.; Dorigny, A.; King, D. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements. Eur. J. Soil Sci. 2010, 61, 120–132. [Google Scholar] [CrossRef]
- Wessolek, G.; Kaupenjohann, M.; Renger, M. Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis; Technische Universität Berlin: Berlin, Germany.
- Richards, L.A.; Weaver, L.R. Moisture retention by some irrigated soils as related to soil-moisture tension. J. Agric. Res. 1944, 69, 215–235. [Google Scholar]
- Veihmeyer, F.J.; Hendrickson, A.H. Soil moisture in relation to plant growth. Annu. Rev. Plant Physiol. 1950, 1, 285–305. [Google Scholar] [CrossRef]
- Richards, L.A.; Wadleigh, C.H. Soil water and plant growth. In Soil Physical Conditions and Plant Growth; Byron, T.S., Ed.; Academic Press: London, UK, 1952; Volume 2, p. 491. [Google Scholar]
- Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. SOIL 2015, 1, 273–286. [Google Scholar] [CrossRef]
- BGR (Federal Institute for Geosciences and Natural Resources). Borehole Profile Backend Service; Version 1.0.1; Section Geodata Management: Hannover, Germany, 2016. [Google Scholar]
Minimum | Mean | Median | Maximum | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|---|
Veris ECadeep [mS m−1] | 0.5 | 4.0 | 3.3 | 23.8 | 2.4 | 0.6 |
Veris pH | 4.9 | 6.0 | 6.0 | 6.9 | 0.5 | 0.1 |
NDVI | 0.08 | 0.23 | 0.23 | 0.29 | 0.02 | 0.09 |
Fresh biomass [g m−2] | 219.1 | 595.7 | 678.1 | 1114.9 | 308.4 | 0.5 |
Dry biomass [g m−2] | 71.2 | 146.2 | 148.3 | 251.2 | 51.0 | 0.3 |
Clay [%] | 0.0 | 3.3 | 3.0 | 7.0 | 1.6 | 0.5 |
Silt [%] | 8.0 | 11.3 | 11.0 | 16.0 | 2.1 | 0.2 |
Sand [%] | 77.0 | 85.3 | 86.0 | 89.0 | 2.6 | 0.03 |
Soil moisture [%] | 4.8 | 8.1 | 7.9 | 11.7 | 1.3 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, S.; Gebbers, R.; Oertel, M.; Kramer, E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors 2019, 19, 4593. https://doi.org/10.3390/s19204593
Vogel S, Gebbers R, Oertel M, Kramer E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors. 2019; 19(20):4593. https://doi.org/10.3390/s19204593
Chicago/Turabian StyleVogel, Sebastian, Robin Gebbers, Marcel Oertel, and Eckart Kramer. 2019. "Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing" Sensors 19, no. 20: 4593. https://doi.org/10.3390/s19204593
APA StyleVogel, S., Gebbers, R., Oertel, M., & Kramer, E. (2019). Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors, 19(20), 4593. https://doi.org/10.3390/s19204593