Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Methods
2.2.1. Proximal Soil Sensing of Grassland Soil
2.2.2. UAV-Based Remote Sensing of Grassland Biomass
- Reflectance (R) of red, green, and blue (, , ),
- Hue,
- Saturation,
- Value,
- Normalized difference vegetation index,
- Visible atmospheric resistant index,
2.2.3. Reference Sampling and Laboratory Analysis
- To represent extreme values of the target parameter,
- to be spatially homogeneous,
- to be well distributed throughout the area of investigation.
2.2.4. Data Analysis
Spatial Data Alignment and Visualization
Analysis of Spatial Variability and Spatial Interpolation by Geostatistics
Outlier Removal by Spatial Cross-Validation
Calibration of Sensor Data
Modeling of Growth Response by Boundary-Line Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Correlation Between Grassland Biomass and Multi-Spectral Indices
3.2. Spatial Variability of Grassland Biomass, pH, and ECa
3.3. Relationship Between ECa, pH, and Grassland Biomass
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Vitti, C.; Langella, G.; Terribile, F.; Venezia, A. A Combined Approach of Sensor Data Fusion and Multivariate Geostatistics for Delineation of Homogeneous Zones in an Agricultural Field. Sensors 2017, 17, 2794. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L.; Balzarini, M.; Angelini, H. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can. J. Soil Sci. 2013, 93, 205–218. [Google Scholar] [CrossRef]
- Xu, H.-W.; Wang, K.; Bailey, J.; Jordan, C.; Withers, A. Temporal stability of sward dry matter and nitrogen yield patterns in a temperate grassland. Pedosphere 2016, 16, 735–744. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. Adv. Agron. 2017, 143, 175–245. [Google Scholar]
- Moral, F.J.; Terrón, J.M.; Marques da Silva, J.R. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Geypens, M.; Vanongeval, L.; Vogels, N.; Meykens, J. Spatial Variability of Agricultural Soil Fertility Parameters in a Gleyic Podzol of Belgium. Precis. Agric. 1999, 1, 319–326. [Google Scholar] [CrossRef]
- Bernardi, A.C.C.; Bettiol, G.M.; Ferreira, R.P.; Santos, K.E.L.; Rabello, L.M.; Inamasu, R.Y. Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precis. Agric. 2016, 17, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xin, X.; Shao, Q.; Brolly, M.; Zhu, Z.; Chen, J. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors 2017, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.M.; Shahidian, S.; Marques da Silva, J. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture. Precis. Agric. 2017, 18, 245–263. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; de Carvalho, M. A Holistic Approach to the Evaluation of the Montado Ecosystem Using Proximal Sensors. Sensors 2018, 18, 570. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, C.; Watson, C.; Berendonk, C.; Becker, R.; Wrage-Mönnig, N.; Wichern, F. Relationship between Remote Sensing Data, Plant Biomass and Soil Nitrogen Dynamics in Intensively Managed Grasslands under Controlled Conditions. Sensors 2017, 17, 1483. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.P.; Peña, J.M.; Höglind, M.; Bengochea-Guevara, J.M.; Andújar, D. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 2019, 19, 535. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, X.; Qui, J.; Li, J.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.; Yu, H.; Xu, B. Remote Sensing-Based Biomass Estimation and its Spatio-Temporal Variations in Temperate Grassland, Northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Yule, I.J.; Tuohy, M.P.; Hedley, M.J.; Dynes, R.A.; King, W.M. Proximal sensing of the seasonal variability of pasture nutritive value using multispectral radiometry. Grass Forage Sci. 2013, 68, 110–119. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Yang, Y.; He, H.; Zhu, X.; Yang, F.; Yin, C.; Xiang, W. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]
- Xu, D.; Guo, X. Some insights on grassland health assessment based on remote sensing. Sensors 2015, 15, 3070–3089. [Google Scholar] [CrossRef]
- Moral, F.J.; Serrano, J.M. Using low cost geophysical survey to map soil properties and delineate management zones on grazed permanent pastures. Precis. Agric. 2019, 20, 1000–1014. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T. Soil electrical conductivity as a crop productivitymeasure for claypan soils. J. Prod. Agric. 1999, 12, 607–617. [Google Scholar] [CrossRef]
- Luchiari, A.; Shanahan, J.; Francis, D.; Schlemmer, M.; Schepers, J.; Liebig, M. Strategies for establishing management zones for site specific nutrient management. In Proceedings of the 5th International Conference on Precision Agriculture, Madison, WI, USA, 16–19 July 2001. [Google Scholar]
- Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems. Agron. J. 2003, 95, 483–495. [Google Scholar] [CrossRef]
- Soil Map of Germany. Bodenübersichtskarte der Bundesrepublik Deutschland 1:200.000 (BÜK200). Available online: https://www.bgr.bund.de/DE/Themen/Boden/Projekte/Informationsgrundlagen-laufend/BUEK200/BUEK200.html (accessed on 11 June 2019).
- Lund, E.D.; Adamchuk, V.I.; Collings, K.L.; Drummond, P.E.; Christy, C.D. Development of soil pH and lime requirementmaps using on-the-go soil sensors. In Proceedings of the Precision Agriculture: Papers from the Fifth European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005. [Google Scholar]
- Schirrmann, M.; Gebbers, R.; Kramer, E.; Seidel, J. Soil pH Mapping with an On-The-Go Sensor. Sensors 2011, 11, 573–598. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Lück, E.; Dabas, M.; Domsch, H. Comparison of instruments for geoelectrical soil mapping at the field scale. Near Surf. Geophys. 2009, 7, 179–190. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Viscarra Rossel, R.A.; Marx, D.B.; Samal, A.K. Using targeted sampling to process multivariate soil sensing data. Geoderma 2011, 163, 63–73. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Wiley: Chichester, UK, 2007; p. 315. [Google Scholar]
- Christakos, G.; Bogaert, P.; Serre, M. Temporal GIS. Advanced Functions for Field-Based Applications; Springer: Berlin, Germany, 2002. [Google Scholar]
- Webb, R.A. Use of the boundary line in analysis of biological data. J. Hortic. Sci. Biotechnol. 1972, 47, 309–319. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G.J. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Kaiser, M.S.; Speckman, P.L.; Jones, J.R. Statistical models for limiting nutrient relations in inland water. J. Am. Stat. Assoc. 1994, 89, 410–423. [Google Scholar] [CrossRef]
- Lark, R.M.; Milne, A.E. Boundary line analysis of the effect of water-filled pore space on nitrous oxide emission from cores of arable soil. Eur. J. Soil. Sci. 2016, 67, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.D.; Weiblen, G.; Thomson, B.A. Untangling multiple factors in spatial distributions: Lilies, gophers and rocks. Ecol. 1996, 77, 1698–1715. [Google Scholar] [CrossRef]
- Cade, B.S.; Terrell, J.W.; Schroeder, R.L. Estimating effects of limiting factors with regression quantiles. Ecology 1999, 80, 311–323. [Google Scholar] [CrossRef]
- Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Chen, J.; Gu, S.; Shen, M.; Tang, Y.; Matsushita, B. Estimating aboveground biomass of grassland having a high canopy cover: An exploratory analysis of in situ hyperspectral data. Int. J. Remote Sens. 2009, 30, 6497–6517. [Google Scholar] [CrossRef]
- Gebbers, R. Fehleranalyse im System der Ortsspezifischen Grunddüngung. Forschungsbericht Agrartechnik des Arbeitskreises Forschung und Lehre der Max-Eyth-Gesellschaft Agrartechnik im VDI, 474; Leibniz-Inst. für Agrartechnik Potsdam-Bornim eV: Potsdam, Germany, 2008. [Google Scholar]
- MLUV. Landnutzung ändert Böden—Steckbriefe Brandenburger Böden. Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz des Landes Brandenburg (MLUV); Landesvermessung und Geobasisinformation Brandenburg: Frankfurt, Germany, 2011. [Google Scholar]
- Walker, D.B.; Haugen-Kozyra, K.; Wang, C. Effects of Long-term Cultivation on a Morainal Landscape in Alberta, Canada. In Proceedings of the Third International Conference on Precision Agriculture, Madison, WI, USA, 23–26 June 1996. [Google Scholar]
- Cade, B.S.; Guo, Q. Estimating effects of constraints on plant performance with regression quantiles. Oikos 2000, 91, 245–254. [Google Scholar] [CrossRef]
- Van Dorp, J.R.; Kotz, S. Generalized trapezoidal distributions. Metrika 2003, 58, 85–97. [Google Scholar] [CrossRef]
- Schmidt, L.; Märtin, B. Produktionsanleitung und Richtwerte für den Anbau von Luzerne und Luzernegras; Landwirtschaftsausstellung der DDR: Markkleeberg, Germany, 1978. [Google Scholar]
- Kreil, W.; Simon, W.; Wojahn, E. Futterpflanzenbau, Empfehlungen, Richtwerte, Normative. Band 2—Ackerfutter; VEB Deutscher Landwirtschaftsverlag: Berlin, Germany, 1983. [Google Scholar]
- Bundessortenamt. Beschreibende Sortenliste, Futtergräser, Esparsette, Klee, Luzerne; Bundessortenamt: Hannover, Germany, 2009. [Google Scholar]
- McBratney, A.B.; Minasny, B.; Whelan, B.M. Obtaining ‘useful’ high-resolution soil data from proximally-sensed electrical conductivity/resistivity (PSEC/R) surveys. Precis. Agric. 2005, 5, 503–510. [Google Scholar]
- Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. Adv. Agron. 2011, 113, 237–282. [Google Scholar]
- Corwin, D.L.; Lesch, S. Application of Soil Electrical Conductivity to Precision Agriculture. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Lück, E.; Spangenberg, U.; Rühlmann, J. Comparison of different EC-mapping sensors. In Proceedings of the Precision agriculture `09, 7th European Conference on Precision Agriculture, Wageningen, The Netherlands, 6–8 July 2009. [Google Scholar]
- Cousin, I.; Besson, A.; Bourennane, H.; Pasquier, C.; Nicoullaud, B.; King, D.; Richard, G. From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. C. R. Geosci. 2009, 341, 859–867. [Google Scholar] [CrossRef]
- Besson, A.; Cousin, I.; Bourennane, H.; Nicoullaud, B.; Pasquier, C.; Richard, G.; Dorigny, A.; King, D. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements. Eur. J. Soil Sci. 2010, 61, 120–132. [Google Scholar] [CrossRef]
- Wessolek, G.; Kaupenjohann, M.; Renger, M. Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis; Technische Universität Berlin: Berlin, Germany.
- Richards, L.A.; Weaver, L.R. Moisture retention by some irrigated soils as related to soil-moisture tension. J. Agric. Res. 1944, 69, 215–235. [Google Scholar]
- Veihmeyer, F.J.; Hendrickson, A.H. Soil moisture in relation to plant growth. Annu. Rev. Plant Physiol. 1950, 1, 285–305. [Google Scholar] [CrossRef]
- Richards, L.A.; Wadleigh, C.H. Soil water and plant growth. In Soil Physical Conditions and Plant Growth; Byron, T.S., Ed.; Academic Press: London, UK, 1952; Volume 2, p. 491. [Google Scholar]
- Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards. SOIL 2015, 1, 273–286. [Google Scholar] [CrossRef] [Green Version]
- BGR (Federal Institute for Geosciences and Natural Resources). Borehole Profile Backend Service; Version 1.0.1; Section Geodata Management: Hannover, Germany, 2016. [Google Scholar]
Minimum | Mean | Median | Maximum | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|---|
Veris ECadeep [mS m−1] | 0.5 | 4.0 | 3.3 | 23.8 | 2.4 | 0.6 |
Veris pH | 4.9 | 6.0 | 6.0 | 6.9 | 0.5 | 0.1 |
NDVI | 0.08 | 0.23 | 0.23 | 0.29 | 0.02 | 0.09 |
Fresh biomass [g m−2] | 219.1 | 595.7 | 678.1 | 1114.9 | 308.4 | 0.5 |
Dry biomass [g m−2] | 71.2 | 146.2 | 148.3 | 251.2 | 51.0 | 0.3 |
Clay [%] | 0.0 | 3.3 | 3.0 | 7.0 | 1.6 | 0.5 |
Silt [%] | 8.0 | 11.3 | 11.0 | 16.0 | 2.1 | 0.2 |
Sand [%] | 77.0 | 85.3 | 86.0 | 89.0 | 2.6 | 0.03 |
Soil moisture [%] | 4.8 | 8.1 | 7.9 | 11.7 | 1.3 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogel, S.; Gebbers, R.; Oertel, M.; Kramer, E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors 2019, 19, 4593. https://doi.org/10.3390/s19204593
Vogel S, Gebbers R, Oertel M, Kramer E. Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors. 2019; 19(20):4593. https://doi.org/10.3390/s19204593
Chicago/Turabian StyleVogel, Sebastian, Robin Gebbers, Marcel Oertel, and Eckart Kramer. 2019. "Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing" Sensors 19, no. 20: 4593. https://doi.org/10.3390/s19204593
APA StyleVogel, S., Gebbers, R., Oertel, M., & Kramer, E. (2019). Evaluating Soil-Borne Causes of Biomass Variability in Grassland by Remote and Proximal Sensing. Sensors, 19(20), 4593. https://doi.org/10.3390/s19204593