Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. GRAIL Gravity Data
2.2. Gravity Derivative Calculation
2.3. Three Dimension (3D) Density Inversion
2.3.1. Inversion Algorithm
2.3.2. Implementation
3. Results
4. Discussion
4.1. 3D Density Model and Evolution for the Von Kármán Basin
4.2. Implication of the Von Kármán Density Structure for the Chang’E-4 Mission
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Losiak, A.; Wilhelms, D.E.; Byrne, C.J.; Thaisen, K.G.; Weider, S.Z.; Kohout, T.; Kring, D.A. A new Lunar Impact Crater Database. In Proceedings of the 40th Lunar and Planetary Science Conference, Houston, TX, USA, 23–27 March 2009. [Google Scholar]
- Huang, J.; Xiao, Z.; Flahaut, J.; Martinot, M.; Head, J.; Xiao, X.; Xie, M.; Xiao, L. Geological Characteristics of Von Kármán Crater, Northwestern South Pole-Aitken Basin: Chang’E-4 Landing Site Region. J. Geophys. Res. Planets 2018, 123, 1684–1700. [Google Scholar] [CrossRef]
- Potter, R.W.K.; Collins, G.S.; Kiefer, W.S.; Mcgovern, P.J.; Kring, D.A. Constraining the size of the South Pole-Aitken basin impact. Icarus 2012, 220, 730–743. [Google Scholar] [CrossRef]
- Moriarty, D.P.; Pieters, C.M. The character of South PoleAitken basin: Patterns of surface and subsurface composition. J. Geophys. Res. Planets 2018, 123, 729–747. [Google Scholar] [CrossRef]
- Yingst, R.A.; Head, J.W., III. Volumes of lunar lava ponds in South Pole-Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions. J. Geophys. Res. 1997, 102, 10909–10931. [Google Scholar] [CrossRef] [Green Version]
- Pasckert, J.G.; Hiesinger, H.; van der Bogert, C.H. Lunar farside volcanism in and around the South Pole–Aitken basin. Icarus 2018, 599, 538–562. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Neumann, G.A.; Nimmo, F.; Kiefer, W.S.; Taylor, G.J.; Melosh, H.J.; Philips, R.J.; Solomon, S.C.; Andrews-Hanna, J.C.; Asmar, S.W.; et al. The Crust of the Moon as Seen by GRAIL. Science 2013, 339, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Goossens, S.; Lemoine, F.G.; Sabaka, T.J.; Nicholas, J.B.; Mazarico, E.; Rowlands, D.D.; Loomis, B.D.; Chinn, D.S.; Neumann, G.A.; Smith, D.E.; et al. A global degree and order 1200 model of the lunar gravity field using grail mission data. In 47th Lunar and Planetary Science Conference; Lunar and Planetary Institute: Houston, TX, USA, 2016; pp. 13–14. [Google Scholar]
- Neumann, G.A.; Zuber, M.T.; Wieczorek, M.A.; Head, J.W.; Baker, D.M.H.; Solomon, S.C.; Smith, D.E.; Lemoine, F.G.; Mazarico, E.; Sabaka, T.J.; et al. Lunar impact basins revealed by gravity recovery and interior laboratory measurements. Sci. Adv. 2015, 1, 1–11. [Google Scholar] [CrossRef]
- Di, K.; Liu, Z.; Liu, B.; Wan, W.; Peng, M.; Wang, Y.; Gou, S.; Yue, Z.; Xin, X.; Jia, M.; et al. Chang’E-4 lander localization based on multi-source data. J. Remote Sens. 2019, 4619, 177–184. [Google Scholar]
- Wu, W.R.; Wang, Q.; Tang, Y.H.; Yu, G.B.; Liu, J.Z.; Zhang, W. Design of Chang’E-4 lunar farside soft-landing mission. J. Deep Space Explor. 2017, 4, 111–117. (In Chinese) [Google Scholar]
- Qiao, L.; Ling, Z.; Fu, X.; Li, B. Geological characterization of the Chang’ e-4 landing area on the lunar farside. Icarus 2019, 333, 37–51. [Google Scholar] [CrossRef]
- Pieter, C.M.; Head, J.W.; Gaddis, L.; Jolliff, B.; Duke, M. Rock types of South Pole-Aitken basin and extent of basaltic volcanism. J. Geophys. Res. 2001, 106, 28001–28022. [Google Scholar] [CrossRef]
- Pieters, C.M.; Tompkins, S.; Head, J.W.; Hess, P.C. Mineralogy of the Mafic Anomaly in the South Pole-Aitken Basin: Implications for excavation of the lunar mantl. Geophys. Res. Lett. 1997, 24, 1903–1906. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Wei, Z.; Zeng, X.; Xu, R.; Tan, X.; et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 2019, 569, 378–382. [Google Scholar] [CrossRef]
- Melosh, H.J.; Kendall, J.; Horgan, B.; Johnson, B.C.; Bowling, T.; Lucey, P.G.; Taylor, G.J. South Pole—Aitken basin ejecta reveal the Moon’ s upper mantle. Geology 2017, 45, 1063–1066. [Google Scholar] [CrossRef]
- Vaughan, W.M.; Head, J.M. Impact melt differentiation in the South Pole-Aitken basin: Some observations and speculations. Planet. Space Sci. 2014, 91, 101–106. [Google Scholar] [CrossRef]
- Jansen, J.C.; Andrews-Hanna, J.C.; Li, Y.; Lucey, P.G.; Taylor, G.J.; Goossens, S.; Lemoine, F.G.; Mazarico, E.; Head, J.W., III; Milbury, C.; et al. Small-scale density variations in the lunar crust revealed by GRAIL. Icarus 2017, 291, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Han, S.C.; Schmerr, N.; Neumann, G.; Holmes, S. Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data. Geophys. Res. Lett. 2014, 41, 882–1889. [Google Scholar] [CrossRef]
- Huang, Q.; Wieczorek, M.A. Density and porosity of the lunar crust from gravity and topography. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Besserer, J.; Nimmo, F.; Wieczorek, M.A.; Weber, R.C.; Kiefer, W.S.; McGovern, P.J.; Andrewa-Hanna, J.C.; Smith, D.E.; Zuber, M.T. GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 2014, 47, 5771–5777. [Google Scholar] [CrossRef]
- Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Yamamoto, S.; Hiroi, T.; Saiki, K.; Hirata, A.; Tomoko, A.; Kohei, T.; Hiroshi, T.; et al. Ultramafic impact melt sheet beneath the South Pole–Aitken basin on the Moon. Geophys. Res. Lett. 2009, 36, L22202. [Google Scholar] [CrossRef]
- Konopliv, A.S.; Asmar, S.W.; Carranza, E.; Sjogren, W.L.; Yuan, D.N. Recent gravity models as a result of the Lunar Prospector mission. Icarus 2001, 150, 1–18. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Lehman, D.H.; Hoffman, T.L.; Asmar, S.W.; Watkins, M.M. Gravity Recovery and Interior Laboratory (GRAIL): Mapping the Lunar Interior from Crust to Core. Space Sci. Rev. 2013, 178, 2–27. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Watkins, M.M.; Asmar, S.W.; Konopliv, A.S.; Lemoine, F.G.; Melosh, H.J.; Neumann, G.A.; Philips, R.J.; Solomon, S.C.; et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 2013, 339, 668–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, F.G.; Goossens, S.; Sabaka, T.J.; Nicholas, J.B.; Mazarico, E.; Rowlands, D.D.; Loomis, B.D.; Chinn, D.S.; Neumann, G.A.; Smith, D.E.; et al. GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 2014, 41, 3382–3389. [Google Scholar] [CrossRef] [Green Version]
- Konopliv, A.S.; Park, R.S.; Yuan, D.N.; Asmar, S.W.; Watkins, M.M.; Williams, J.G.; Fahnstock, E.; Kruizinga, G.; Paik, M.; Strekalov, D.; et al. High-resolution lunar gravity fields from the GRAIL Primary and Extended Missions. Geophys. Res. Lett. 2014, 41, 452–1458. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Phillips, R.J. Potential anomalies on a sphere’ Applications to the thickness of the lunar crust. J. Geophys. Res. 1998, 103, 1715–1724. [Google Scholar] [CrossRef]
- Wieczorek, M.A. SHTOOLS—Tools for working with spherical harmonics (v2.9.1). Zenodo 2014. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Meschede, M. SHTools—Tools for working with spherical harmonics. Geochem. Geophys. Geosyst. 2018, 19, 2574–2592. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. 2000, 105, 4197–4216. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Du, X.-J.; Li, L.-L.; Meng, L.-S. Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal. Appl. Geophys. 2012, 9, 468–474. [Google Scholar] [CrossRef]
- Miller, H.G.; Singh, V. Potential field tilt—A new concept for location of potential field sources. J. Appl. Geophys. 1994, 32, 213–217. [Google Scholar] [CrossRef]
- Kolawole, F.; Atekwana, E.A.; Laó-Dávila, D.A.; Abdelsalam, M.G.; Chindandali, P.R.; Salima, J.; Kalindekafe, L. Active Deformation of Malawi Rift’s North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric. Tectonics 2018, 37, 683–704. [Google Scholar] [CrossRef]
- Cheek, L.C.; Hanna, K.L.D.; Pieters, M.; Head, J.W.; Whitten, J.L. The distribution and purity of anorthosite across the Orientale basin: New perspectives from Moon Mineralogy Mapper data. J. Geophys. Res. Planets 2013, 118, 1805–1820. [Google Scholar] [CrossRef]
- Grove, T.L.; Krawczynski, M.J. Lunar Mare Volcanism: Where Did the Magmas Come From? Elements 2009, 5, 29–34. [Google Scholar] [CrossRef]
- James, W. Lunar Volcanism in Space and Time. Rev. Geophys. 1976, 14, 265–300. [Google Scholar]
- Neal, C.; Taylor, L. Petrogenesis of mare basalts: A record of lunar volcanism. Geochim. Cosmchimica Acta 1992, 56, 2177–2211. [Google Scholar] [CrossRef]
- Wood, J.A. Petrology of the Lunar Soil and Geophysical Implications. J. Geophys. Res. 1970, 75, 6497–6513. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Li, F.; Chen, C.; Mei, B.; Jin, S.; Dohm, J.H. A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers. Geophys. J. Int. 2015, 201, 267–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Li, H.; Zhang, X.; Yan, J.; Wu, G.; Wang, J. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame. In CGS/SEG International Geophysical Conference; Society of Exploration Geophysicists: Tulsa, OK, USA, 2017; pp. 17–20. [Google Scholar]
- Zhang, Y.; Wu, Y.; Yan, J.; Wang, H.; Rodriguez, J.A.P.; Qiu, Y. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north—oriented frame. Earth Planets Space 2018, 70. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, C.; Li, Y. 3-D inversion ofgravitydata in spherical coordinates with application to the GRAIL data. J. Geophys. Res. Planets Res. 2014, 119, 1359–1373. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.Y. 3-D inversion of magnetic data. Geophysics 1996, 61, 394–408. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.Y. 3-D inversion of gravity data. Geophysics 1998, 63, 264–267. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill.-Posed Problems; Winston and Sons: Washington, DC, USA, 1977. [Google Scholar]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problem; Prentice-Hall: New Jersey, NJ, USA, 1974. [Google Scholar]
- Hansen, P.C. Analysis of discrete ill-posed problems by means of the L-curve. Soc. Ind. Appl. Math. Rev. 1992, 34, 561–580. [Google Scholar] [CrossRef]
- Calvettia, D.; Morigib, S.; Reichelc, L.; Sgallarid, F. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 2000, 123, 423–446. [Google Scholar] [CrossRef] [Green Version]
- Hestenes, M.R. Multiplier and Gradient Methods. J. Optim. Theory Appl. 1969, 4, 303–320. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Convex Analysis; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Asgharzadeh, M.F.; Von Frese, R.R.B.; Kim, H.R.; Leftwich, T.E.; Kim, J.W. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int. 2007, 169, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.V.; Anderson, A.T.; Newton, R.C.; Olsen, E.J.; Wyllie, P.J.; Crewe, A.V.; Isaacson, M.S.; Johnson, D. Petrologic history of the moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In Apollo 11 Lunar Science Conference; Pergammon Press: New York, NY, USA, 1970; pp. 897–925. [Google Scholar]
- Wood, J.A.; Dickey, J.S.; Marvin, U.B.; Powell, B.N. Lunar anorthosites and a geophysical model of the moon. In Apollo 11 Science Conference; Pergammon Press: New York, NY, USA, 1970; pp. 965–988. [Google Scholar]
- Melosh, H.J.; Freed, A.M.; Johnson, B.C.; Blair, D.M.; Andrews-Hanna, J.C.; Neumann, G.A.; Philips, R.J.; Smith, D.E.; Solomon, S.C.; Wieczorek, M.A.; et al. The origin of lunar mascon basins. Science 2013, 340, 1552–1555. [Google Scholar] [CrossRef]
- Dombard, A.J.; Hauck, S.A.; Balcerski, J.A. On the origin of mascon basins on the Moon (and beyond). Geophys. Res. Lett. 2013, 40, 28–32. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Phillips, R.J. Lunar Multiring Basins and the Cratering Process. Icarus 1999, 259, 246–259. [Google Scholar] [CrossRef]
- Deutsch, A.N.; Neumann, G.A.; Head, J.W.; Wilson, L. GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon. Icarus 2019, 331, 192–208. [Google Scholar] [CrossRef]
- Edgar, L.A.; Frey, H.V. Buried impact basin distribution on Mars: Contributions from crustal thickness data. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Evans, A.J.; Soderblom, J.M.; Andrews-Hanna, J.C.; Solomon, S.C.; Zuber, M.T. Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria. Geophys. Res. Lett. 2016, 43, 2445–2455. [Google Scholar] [CrossRef] [Green Version]
- Freed, A.M.; Johnson, B.C.; Blair, D.M.; Melosh, H.J.; Neumann, G.A.; Phillips, R.J.; Solomon, S.C.; Wieczorek, M.A.; Zuber, M.T. The formation of lunar mascon basins from impact to contemporary form. J. Geophys. Res. E Planets 2014, 119, 2378–2397. [Google Scholar] [CrossRef] [Green Version]
- Haruyama, J.; Ohtake, M.; Matsunaga, T.; Morota, T.; Honda, C.; Yokota, Y.; Abe, M.; Ogawa, Y.; Miyamoto, H.; Iwasaki, A.; et al. Long-Lived Volcanism on the Lunar Farside Revealed by SELENE Terrain Camera. Science 2009, 323, 905–908. [Google Scholar] [CrossRef] [Green Version]
Region | Inversion Range | Model | Data | ||
---|---|---|---|---|---|
Grid Size | Grid Number | Data Size | Data Number | ||
Von Kármán | Longitude | 0.2° | 50 | 0.2° | 50 |
Latitude | 0.2° | 48 | 0.2° | 48 | |
Depth | 0–2 km | 0–50 km | |||
Radial direction | 0.5 km | 41 | 0.5 km | 41 |
Final Parameters for the Density Inversion | Determining the Optimal Value of the Regularization Parameter | |||||
---|---|---|---|---|---|---|
Parameter | Value | No | Tikhonov Parameter Exponent | Tikhonov Parameter | Data Misfit Value | Model Norm Value |
Roughness factor | 2, 2, 2 | 1 | 4.00 | 10,000.00 | 22714.7 | 9.55 |
Length scale | 1 × 10−10 | 2 | 3.00 | 1000.00 | 2146.65 | 14.49 |
Depth weighting parameter | 2 | 3 | 2.50 | 316.20 | 879.65 | 16.63 |
Penalty factor | 1 × 10−6 | 4 | 2.00 | 100.00 | 437.87 | 19.09 |
Increase number for penalty factor | 2 | 5 | 1.50 | 31.62 | 256.41 | 23.03 |
Convergence threshold of the inversion | 1 × 10−4 | 6 | 1.00 | 10.00 | 167.94 | 31.41 |
Maximum iteration number of the inversion | 1000 | 7 | 0.50 | 3.16 | 114.40 | 49.92 |
Convergence threshold of the CG method | 1 × 10−8 | 8 | 0.00 | 1.00 | 75.13 | 91.54 |
Maximum iteration number of the CG method | 500 | 9 | 0.05 | 1.12 | 78.55 | 85.74 |
10 | 0.10 | 1.26 | 82.09 | 80.37 | ||
11 | 0.15 | 1.41 | 85.75 | 75.41 | ||
12 | 0.20 | 1.59 | 89.51 | 70.83 | ||
13 | 0.30 | 1.59 | 89.51 | 70.83 | ||
14 | 0.40 | 2.51 | 105.65 | 55.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chisenga, C.; Yan, J.; Zhao, J.; Deng, Q.; Barriot, J.-P. Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region. Sensors 2019, 19, 4445. https://doi.org/10.3390/s19204445
Chisenga C, Yan J, Zhao J, Deng Q, Barriot J-P. Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region. Sensors. 2019; 19(20):4445. https://doi.org/10.3390/s19204445
Chicago/Turabian StyleChisenga, Chikondi, Jianguo Yan, Jiannan Zhao, Qingyun Deng, and Jean-Pierre Barriot. 2019. "Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region" Sensors 19, no. 20: 4445. https://doi.org/10.3390/s19204445
APA StyleChisenga, C., Yan, J., Zhao, J., Deng, Q., & Barriot, J.-P. (2019). Density Structure of the Von Kármán Crater in the Northwestern South Pole-Aitken Basin: Initial Subsurface Interpretation of the Chang’E-4 Landing Site Region. Sensors, 19(20), 4445. https://doi.org/10.3390/s19204445