Industrial Applications of Terahertz Sensing: State of Play
Abstract
:1. Introduction
2. Instrumentation
- TDS is acquired in the time domain, i.e., it follows the time evolution of the signal (Figure 2a). Spectral data is derived by applying a Fourier transform (Figure 2b). As a result, there are two different approaches available for analysing the sensor data. Either time-domain or frequency-domain (i.e., spectral) data may be more useful for a particular application.
- TDS operates in a signal-probe configuration and uses short pulses (the THz pulse length is ~1 ps and the probe pulse length is <0.1 ps). As a consequence, there are no standing waves formed in the system itself or in the material/object measured. This simplifies data analysis.
- Because TDS uses short pulses and coherent detection, it provides an unambiguous measurement of the electromagnetic field amplitude and phase, which directly yield transmission loss and phase delay, and which in turn can be used to derive the absorption coefficient and refractive index of the material measured (Figure 2c).
- In most cases, TDS applications require a reference measurement, i.e., a data set recorded either without any sample or with reference material in place. However, once a reference data set is obtained for a specific system configuration, TDS instruments do not require repeated frequent calibration.
- The nominal operational bandwidth of a typical TDS system is 0.1–5 THz. However, this is reduced by transmission loss (according to a well-formulated dependence). The typical frequency resolution is ~5 GHz, down to 1 GHz is achievable. TDS is inherently broadband: each time-domain pulse trace yields a complete spectral data set.
- A reference time-domain trace is recorded, followed (or preceded) by a measurement of the sample (Figure 2a).
- A Fourier transform is applied to the time-domain data, yielding spectral data (Figure 2b). THz transmission loss in the sample is evident in the difference between the reference and sample spectra.
- The THz optical parameters of the sample are calculated from the spectral data of reference and sample (Figure 2c) [11,12,13,14]. The refractive index is obtained from the phase data; whereas the absorption coefficient is derived from the amplitude data, taking into account the previously calculated refractive index.
- Akin to TDS, a reference measurement is recorded, followed (or preceded) by a measurement of the sample (Figure 3a blue and grey). The phase-sensitive (coherent) detection scheme gives rise to phase “fringes”: the detected signal, i.e., the photocurrent measured in the receiver photomixer, oscillates between negative and positive values as the THz frequency is scanned. This effect is similar to scanning an interference pattern in frequency [26] and must not be confused with standing waves that arise due to multiple reflections of the beam. Note that the frequency step size in the example of Figure 3 is as small as 1 MHz, providing high-resolution spectral measurements.
- In the first post-processing step, the envelope spectrum of the phase fringes is computed (Figure 3a purple and black). The most straightforward approach is a simple identification of the phase maxima and minima [26]; however, this method fails if the linewidth of the spectral feature is narrower than the fringe period. Phase and amplitude information for each frequency step is either obtained with phase modulation techniques or by applying a Hilbert transform to the raw data [27].
- The envelope spectrum of the sample is divided by that of the reference measurement. The square of the resulting ratio produces the transmission spectrum (Figure 3b), where the ratio is squared because “transmission” refers to the intensity, whereas the envelope spectra of step (2) are proportional to the electric field of the terahertz wave.
3. Polymers
3.1. Polymers and Polymer Components
3.2. Composite Materials
3.3. Polymer Foams
3.4. Adhesives
4. Paint and Coatings
5. Pharmaceuticals
5.1. Tablet Coating Inspection
5.2. Monitoring Porosity and Pore Size
6. Electronics
6.1. Electronic Circuits
6.2. Solar Cells
6.3. Graphene
7. Petrochemicals
7.1. Crude Petroleum
7.2. Fuels
7.3. Oils
8. Gas Sensing
8.1. Environmental Monitoring
8.2. Breath Analysis
8.3. Natural Gas
9. Paper and Wood
9.1. Paper
9.2. Wood
10. Conclusions
Funding
Conflicts of Interest
References
- Gartner Hype Cycle. Available online: https://www.gartner.com/en/research/methodologies/gartner-hype-cycle (accessed on 27 September 2019).
- Siegel, P.H. THz technology: An overview. In Terahertz Sensing Technology: Volume 1: Electronic Devices and Advanced Systems Technology; World Scientific Publishing Co Pte Ltd: Singapore, 2003; pp. 1–44. [Google Scholar]
- Schmuttenmaer, C.A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 2004, 104, 1759–1780. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, A. Pushing the boundaries. IEEE Microw. Mag. 2009, 10, 106–115. [Google Scholar] [CrossRef]
- Armstrong, C.M. The truth about terahertz. IEEE Spectr. 2012, 49, 36–41. [Google Scholar] [CrossRef]
- Hochrein, T. Markets, availability, notice, and technical performance of terahertz systems: Historic development, present, and trends. J. Infrared Millim. Terahertz Waves 2015, 36, 235–254. [Google Scholar] [CrossRef]
- Top 50 Emerging Technologies: Growth Opportunities of Strategic Imperative. Available online: https://ww3.frost.com/files/6014/7973/5474/Top_50_Emerging_Technologies.pdf (accessed on 27 September 2019).
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photonics 2018, 10, 843–938. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging–Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 739–746. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Ferguson, B.; Rainsford, T.; Mickan, S.P.; Abbott, D. Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration. Proceedings of Photonic Materials, Devices, and Applications, Sevilla, Spain, 7 July 2005; pp. 221–231. [Google Scholar]
- Pupeza, I.; Wilk, R.; Koch, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 2007, 15, 4335–4350. [Google Scholar] [CrossRef]
- Jepsen, P.U. Phase Retrieval in Terahertz Time-Domain Measurements: A “how to” Tutorial. J. Infrared Millim. Terahertz Waves 2019, 40, 395–411. [Google Scholar] [CrossRef]
- Vieweg, N.; Rettich, F.; Deninger, A.; Roehle, H.; Dietz, R.; Göbel, T.; Schell, M. Terahertz-time domain spectrometer with 90 dB peak dynamic range. J. Infrared Millim. Terahertz Waves 2014, 35, 823–832. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Ibey, B.L.; Rivest, B.D.; Grundt, J.E.; Roach, W.P.; Tongue, T.D.; Schulkin, B.J.; Laman, N.; Peralta, X.G.; Roth, C.C.; et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J. Biomed. Opt. 2011, 16, 047006. [Google Scholar] [CrossRef] [PubMed]
- Molter, D.; Ellrich, F.; Weinland, T.; George, S.; Goiran, M.; Keilmann, F.; Beigang, R.; Léotin, J. High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field. Opt. Express 2010, 18, 26163–26168. [Google Scholar] [CrossRef]
- Bartels, A.; Thoma, A.; Janke, C.; Dekorsy, T.; Dreyhaupt, A.; Winnerl, S.; Helm, M. High-resolution THz spectrometer with kHz scan rates. Opt. Express 2006, 14, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Yee, D.-S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Opt. Lett. 2010, 35, 3715–3717. [Google Scholar] [CrossRef] [PubMed]
- Yahyapour, M.; Jahn, A.; Dutzi, K.; Puppe, T.; Leisching, P.; Schmauss, B.; Vieweg, N.; Deninger, A. Fastest Thickness Measurements with a Terahertz Time-Domain System based on Electronically Controlled Optical Sampling. Appl. Sci. 2019, 9, 1283. [Google Scholar] [CrossRef]
- Preu, S.; Döhler, G.H.; Malzer, S.; Wang, L.J.; Gossard, A.C. Tunable, continuous-wave terahertz photomixer sources and applications. Appl. Phys. Rev. 2011, 109, 061301. [Google Scholar] [CrossRef]
- Deninger, A. State-of-the-art in terahertz continuous wave photomixer systems. In Handbook of Terahertz Technology; Saeedkia, D., Ed.; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Kong, D.-Y.; Wu, X.-J.; Wang, B.; Gao, Y.; Dai, J.; Wang, L.; Ruan, Cu.; Miao, J.-G. High resolution continuous wave terahertz spectroscopy on solid-state samples with coherent detection. Opt. Express 2018, 26, 17964–17976. [Google Scholar] [CrossRef] [PubMed]
- Deninger, A.J.; Roggenbuck, A.; Schindler, S.; Preu, S. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J. Infrared Millim. Terahertz Waves 2015, 36, 269–277. [Google Scholar] [CrossRef]
- Vogt, D.W.; Leonhardt, R. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator. Appl. Photonics 2018, 3, 051702. [Google Scholar] [CrossRef]
- Roggenbuck, A.; Schmitz, H.; Deninger, A.; Mayorga, I.C.; Hemberger, J.; Güsten, R.; Grüninger, M. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J. Phys. 2010, 12, 43017–43029. [Google Scholar] [CrossRef]
- Vogt, D.W.; Leonhardt, R. High resolution terahertz spectroscopy of a whispering gallery mode bubble resonator using Hilbert analysis. Opt. Express 2017, 25, 16860. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, D.M. Perspective: Terahertz science and technology. J. Appl. Phys. 2017, 122, 230901. [Google Scholar] [CrossRef]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622. [Google Scholar] [CrossRef]
- Terasense. Available online: https://terasense.com/products/sub-thz-imaging-cameras/ (accessed on 27 September 2019).
- Ticwave. Available online: https://ticwave.com/index.php/shop?filter_catid=37&search=&sortby= (accessed on 27 September 2019).
- i2s. Available online: https://www.i2s.fr/en/product/tzcam (accessed on 27 September 2019).
- INO. Available online: https://www.ino.ca/en/solutions/microxcam-384i-thz/ (accessed on 27 September 2019).
- Fischer, B.M.; Wietzke, S.; Reuter, M.; Peters, O.; Gente, R.; Jansen, C.; Vieweg, N.; Koch, M. Investigating material characteristics and morphology of polymers using terahertz technologies. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 259–268. [Google Scholar] [CrossRef]
- Wietzke, S.; Jansen, C.; Reuter, M.; Jung, T.; Kraft, D.; Chatterjee, S.; Fischer, B.M.; Koch, M. Terahertz spectroscopy on polymers: A review of morphological studies. J. Mol. Struct. 2011, 1006, 41–51. [Google Scholar] [CrossRef]
- Krumbholz, N.; Hochrein, T.; Vieweg, N.; Hasek, T.; Kretschmer, K.; Bastian, M.; Mikulics, M.; Koch, M. Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. Polym. Test. 2009, 28, 30–35. [Google Scholar] [CrossRef]
- Yakovlev, E.V.; Zaytsev, K.I.; Dolganova, I.N.; Yurchenko, S.O. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 810–816. [Google Scholar] [CrossRef]
- Busch, S.F.; Castro-Camus, E.; Beltran-Mejia, F.; Balzer, J.; Koch, M. 3D printed prisms with tunable dispersion for the THz frequency range. J. Infrared Millim. Terahertz Waves 2018, 39, 553–560. [Google Scholar] [CrossRef]
- Scherger, B.; Born, N.; Jansen, C.; Schumann, S.; Koch, M.; Wiesauer, K. Compression molded terahertz transmission blaze-grating. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 556–561. [Google Scholar] [CrossRef]
- Kaji, T.; Tominari, Y.; Yamada, T.; Saito, S.; Morohashi, I.; Otomo, A. Terahertz-wave generation devices using electro-optic polymer slab waveguides and cyclo-olefin polymer clads. Opt. Express 2018, 26, 30466–30475. [Google Scholar] [CrossRef] [PubMed]
- Vieweg, N.; Deninger, A.; Leisching, P. True OEM terahertz systems for industrial applications. In Photonic Instrumentation Engineering VI; International Society for Optics and Photonics, SPIE: San Francisco, CA, USA, 4 March 2019; p. 109250U. [Google Scholar]
- INOEX: The Future of Extrusion. Available online: https://www.inoex.de (accessed on 27 September 2019).
- Fischer Worldwide. Available online: https://www.helmut-fischer.de (accessed on 27 September 2019).
- Hauck, J. Inspektion an Kunststoffbauteilen Mit Terahertz-Zeitbereichsspektroskopie; SKZ-Das Kunststoff-Zentrum: Lulu, Berlin, Germany, 2014; ISBN 978-1-326-11323-0. [Google Scholar]
- Zhang, X.; Guo, Q.; Chang, T.; Cui, H.-L. Broadband stepped-frequency modulated continuous terahertz wave tomography for non-destructive inspection of polymer materials. Polym. Test. 2019, 76, 455–463. [Google Scholar] [CrossRef]
- Toptica Photonics. Available online: https://www.toptica.com/products/terahertz-systems/time-domain/teraflash-pro/ (accessed on 27 September 2019).
- Sommer, S.; Raidt, T.; Fischer, B.M.; Katzenberg, F.; Tiller, J.C.; Koch, M. THz-spectroscopy on high density polyethylene with different crystallinity. J. Infrared Millim. Terahertz Waves 2016, 37, 189–197. [Google Scholar] [CrossRef]
- Engelbrecht, S.; Tybussek, K.; Sampaio, J.; Böhmler, J.; Fischer, B.M.; Sommer, S. Monitoring the Isothermal Crystallization Kinetics of PET-A Using THz-TDS. J. Infrared Millim. Terahertz Waves 2019, 40, 306–313. [Google Scholar] [CrossRef]
- Wietzke, S.; Jansen, C.; Jung, T.; Reuter, M.; Baudrit, B.; Bastian, M.; Chatterjee, S.; Koch, M. Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers. Opt. Express 2009, 17, 19006–19014. [Google Scholar] [CrossRef] [PubMed]
- Wietzke, S.; Jansen, C.; Rutz, F.; Mittleman, D.M.; Koch, M. Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy. Polym. Test. 2007, 26, 614–618. [Google Scholar] [CrossRef]
- Krumbholz, N.; Hochrein, T.; Vieweg, N.; Radovanovic, I.; Pupeza, I.; Schubert, M.; Kretschmer, K.; Koch, M. Degree of dispersion of polymeric compounds determined with terahertz time-domain spectroscopy. Polym. Eng. Sci. 2011, 51, 109–116. [Google Scholar] [CrossRef]
- Jördens, C.; Wietzke, S.; Scheller, M.; Koch, M. Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy. Polym. Test. 2010, 29, 209–215. [Google Scholar] [CrossRef]
- Jördens, C.; Scheller, M.; Wietzke, S.; Romeike, D.; Jansen, C.; Zentgraf, T.; Wiesauer, K.; Reisecker, V.; Koch, M. Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics. Compos. Sci. Technol. 2010, 70, 472–477. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Inspection of internal filler alignment in visibly opaque carbon-black–rubber composites by terahertz polarization spectroscopy in reflection mode. Polym. Test. 2018, 72, 196–201. [Google Scholar] [CrossRef]
- Rutz, F.; Hasek, T.; Koch, M.; Richter, H.; Ewert, U. Terahertz birefringence of liquid crystal polymers. Appl. Phys. Lett. 2006, 89, 221911. [Google Scholar] [CrossRef]
- Mayr, M.; Giovanni, G.; Baudrit, B.; Hochrein, T.; Bastian, M. Strukturanalyse in Der Polymerschaumextrusion; SKZ-Das Kunststoffzentrum; Shaker Verlag Aachen: Dylan, Germany, 2019; ISBN 978-3-8440-6480-3. [Google Scholar]
- Werner, M.; Kolb, C.; Schober, G.; Kremling, S. Charakterisierung Von Polymerschäumen Mittels Zeitaufgelöster Terahertz-Spektroskopie; DGZfP-Jahrestagung: Berlin, Germany, 2017. [Google Scholar]
- Jansen, C.; Wietzke, S.; Wang, H.; Koch, M.; Zhao, G. Terahertz spectroscopy on adhesive bonds. Polym. Test. 2011, 30, 150–154. [Google Scholar] [CrossRef]
- Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M. THz Properties of Adhesives. J. Infrared Millim. Terahertz Waves 2018, 39, 586–593. [Google Scholar] [CrossRef]
- Sommer, S.; Probst, T.; Kraus, E.; Baudrit, B.; Town, G.E.; Koch, M. Cure monitoring of two-component epoxy adhesives by terahertz time-domain spectroscopy. Polym. Sci. Ser. B 2016, 58, 769–776. [Google Scholar] [CrossRef]
- Probst, T.; Sommer, S.; Soltani, A.; Kraus, E.; Baudrit, B.; Town, G.E.; Koch, M. Monitoring the polymerization of two-component epoxy adhesives using a terahertz time domain reflection system. J. Infrared Millim. Terahertz Waves 2015, 36, 569–577. [Google Scholar] [CrossRef]
- Rettich, F.; Vieweg, N.; Cojocari, O.; Deninger, A. Field intensity detection of individual terahertz pulses at 80 MHz repetition rate. J. Infrared Millim. Terahertz Waves 2015, 36, 607–612. [Google Scholar] [CrossRef]
- fmi Future Marketing Insights. Available online: https://www.futuremarketinsights.com (accessed on 27 September 2019).
- White, J.; Fichter, G.; Chernovsky, A.; Zimdars, D.; Whitaker, J.F.; Das, D.; Pollock, T.M. Time-domain terahertz mapping of thickness and degradation of aircraft turbine blade thermal barrier coatings. In Proceedings of the Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008. [Google Scholar]
- Yasui, T.; Yasuda, T.; Sawanaka, K.; Araki, T. Terahertz paint meter for noncontact monitoring of thickness and drying progress in paint film. Appl. Opt. 2005, 44, 6849. [Google Scholar] [CrossRef]
- Picot, M.; Ballacey, H.; Guillet, J.P.; Cassar, Q.; Mounaix, P. Terahertz Paint Thickness Measurements: from lab to automotive and aeronautics industry. In Proceedings of the 15th Asia Pacific Conference for Non-Destructive Testing (APCNDT2017), Singapore, 13–17 November 2017. [Google Scholar]
- Su, K.; Shen, Y.; Zeitler, J.A. Terahertz Sensor for Non-Contact Thickness and Quality Measurement of Automobile Paints of Varying Complexity. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 432–439. [Google Scholar] [CrossRef]
- das.nano. Available online: https://www.das-nano.com/ (accessed on 27 September 2019).
- Jonuscheit, J. Terahertz Waves for Thickness Analyses. Opt. Photonik 2016, 1, 30–33. [Google Scholar] [CrossRef]
- Fraunhofer HHI. Available online: https://www.hhi.fraunhofer.de (accessed on 27 September 2019).
- LUNA Defying Impossible. Available online: https://www.Lunainc.com (accessed on 27 September 2019).
- Van Mechelen, J.L.M.; Kuzmenko, A.B.; Merbold, H. High precision material characterization method using THz spectroscopy. In Proceedings of the 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014. [Google Scholar]
- Kim, K.H.I.S.K.; Hsu, D.K.; Jung, J.A. Coating Thickness Characterization of Composite Materials Using Terahertz Waves. Mater. Sci. Forum 2017, 878, 70–73. [Google Scholar]
- Krimi, S.; Jonuscheit, J.K.J.; Freymann, G.V.; Urbansky, R.; Beigang, R. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 021105. [Google Scholar] [CrossRef]
- Jen, C.-Y.; Richter, C. Sample thickness measurement with THz-TDS: Resolution and implications. J. Infrared Millim. Terahertz Waves 2014, 35, 840–859. [Google Scholar] [CrossRef]
- Scheller, M.A.; Koch, M. Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy. J. Infrared Millim. Terahertz Waves 2009, 30, 762–769. [Google Scholar] [CrossRef]
- Liebelt, L.; Weber, S.; Klier, J.; Pfeiffer, T.; Molter, D.; Ellrich, F.; Jonuscheit, J.; Freymann, G.V. Influence of Bandwidth and Dynamic Range on Layer-Thickness Determination Using Terahertz Time-Domain Spectroscopy; French-German THz Conference: Kaiserlautern, Germany, 2019. [Google Scholar]
- GOh, H.; Park, D.-S.; Kim, D.; Kim, H.-W. Real time measurement based on terahertz time-domain spectroscopy for chip-top epoxy molding compound in semiconductor. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar]
- Pfeiffer, T.; Weber, S.; Klier, J.; Bachtler, S.; Molter, D.; Jonuscheit, J.; Freymann, G.V. Terahertz thickness determination with interferometric correction for industrial applications. Opt. Express 2018, 26, 12558. [Google Scholar] [CrossRef] [PubMed]
- Exter, M.V.; Fattinger, C.; Grischkowsky, D. Terahertz time-domain spectroscopy of water. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Fischer, B.M.; Abbott, D. Numerical removal of water vapour effects from terahertz time-domain spectroscopy measurements. Proc. R. Soc. A 2008, 464, 2435–2456. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Zhao, Z.; Zhang, L.; Kang, K.; Zhang, Y. Restoration of terahertz signals distorted by atmospheric water vapor absorption. J. Appl. Phys. 2009, 105, 103105. [Google Scholar] [CrossRef]
- Shen, Y.-C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. Int. J. Pharm. 2011, 417, 48–60. [Google Scholar] [CrossRef]
- Calvo, N.L.; Maggio, R.M.; Kaufman, T.S. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances. J. Pharm. Biomed. Anal. 2018, 147, 518–537. [Google Scholar] [CrossRef]
- Ruggiero, M.T.; Sibik, J.; Zeitler, J.A.; Korter, T.M. Examination of L-Glutamic Acid Polymorphs by Solid-State Density Functional Theory and Terahertz Spectroscopy. J. Phys. Chem. A 2016, 120, 7490–7495. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Xue, J. Investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques. Curr. Pharm. Des. 2016, 22, 4917–4928. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, I.; Tomoda, K.; Nakajima, T.; Terada, H.; Kuroda, H.; Makino, K. Estimation of crystallinity of trehalose dihydrate microspheres by usage of terahertz time-domain spectroscopy. J. Pharm. Sci. 2012, 101, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Sakamoto, T.; Otsuka, M. Detection of Impurities in Organic Crystals by High-Accuracy Terahertz Absorption Spectroscopy. Anal. Chem. 2018, 90, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Sibik, J.; Lόbmann, K.; Rades, T.; Zeitler, J.A. Predicting crystallization of amorphous drugs with terahertz spectroscopy. Mol. Pharm. 2015, 12, 3062–3068. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.J.; Cole, B.E.; Taday, P.F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J. Pharm. Sci. 2005, 94, 177–183. [Google Scholar] [CrossRef]
- Haaser, M.; Gordon, K.C.; Strachan, C.J.; Rades, T. Terahertz pulsed imaging as an advanced characterisation tool for film coatings—A review. Int. J. Pharm. 2013, 457, 510–520. [Google Scholar] [CrossRef]
- TeraView Pharmaceutical. Available online: https://teraview.com/Pharmaceutical/ (accessed on 27 September 2019).
- Ho, L.; Müller, R.; Gordon, K.C.; Kleinebudde, P.; Pepper, M.; Rades, T.; Shen, Y.; Taday, P.F.; Zeitler, J.A. Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. Eur. J. Pharm. Biopharm. 2009, 71, 117–123. [Google Scholar] [CrossRef]
- Dohi, M.; Momose, W.; Yoshino, H.; Hara, Y.; Yamashita, K.; Hakomori, T.; Sato, S.; Terada, K. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions. J. Pharm. Biomed. Anal. 2016, 119, 104–113. [Google Scholar] [CrossRef]
- Lin, H.; May, R.K.; Evans, M.J.; Zhong, S.; Gladden, L.F.; Shen, Y.; Zeitler, J.A. Impact of processing conditions on inter-tablet coating thickness variations measured by terahertz in-line sensing. J. Pharm. Sci. 2015, 104, 2513–2522. [Google Scholar] [CrossRef]
- Chang, T.; Guo, Q.; Liu, L.; Cui, H.-L. Nondestructive Thickness Inspection of Capsule Coating by Terahertz Time-Domain Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 688–695. [Google Scholar] [CrossRef]
- Ervasti, T.; Silfsten, P.; Ketolainen, J.; Peiponen, K. A study on the resolution of a terahertz spectrometer for the assessment of the porosity of pharmaceutical tablets. Appl. Spectrosc. 2012, 66, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Markl, D.; Strobel, A.; Schlossnikl, R.; Bøtker, J.; Bawuah, P.; Ridgway, C.; Rantanen, J.; Rades, T.; Gane, P.; Peiponen, K.-E.; et al. Characterisation of pore structures of pharmaceutical tablets: A review. Int. J. Pharm. 2018, 538, 188–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markl, D.; Wang, P.; Ridgway, C.; Karttunen, A.; Chakraborty, M.; Bawuah, P.; Pääkkönen, P.; Gane, P.; Ketolainen, J.; Peiponen, K.-E.; et al. Characterization of the pore structure of functionalized calcium carbonate tablets by terahertz time-domain spectroscopy and X-ray computed microtomography. J. Pharm. Sci. 2017, 106, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Markl, D.; Sauerwein, J.; Goodwin, D.J.; van den Ban, S.; Zeitler, J.A. Non-destructive determination of disintegration time and dissolution in immediate release tablets by terahertz transmission measurements. Pharm. Res. 2017, 34, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Markl, D.; Bawuah, P.; Ridgway, C.; van den Ban, S.; Goodwin, D.J.; Ketolainen, J.; Gane, P.; Peiponen, K.-E.; Zeitler, J.A. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy. Int. J. Pharm. 2018, 537, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bawuah, P.; Ervasti, T.; Tan, N.; Zeitler, J.A.; Ketolainen, J.; Peiponen, K. Noninvasive porosity measurement of biconvex tablets using terahertz pulses. Int. J. Pharm. 2016, 509, 439–443. [Google Scholar] [CrossRef]
- Chakraborty, M.; Ridgway, C.; Bawuah, P.; Markl, D.; Gane, P.A.C.; Ketolainen, J.; Zeitler, J.A.; Peiponen, K.-E. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index. Int. J. Pharm. 2017, 525, 85–91. [Google Scholar] [CrossRef]
- Stranzinger, S.; Faulhammer, E.; Li, J.; Dong, R.; Zeitler, J.A.; Biserni, S.; Calzolari, V.; Khinast, J.G.; Markl, D. Predicting capsule fill weight from in-situ powder density measurements using terahertz reflection technology. Int. J. Pharm. 2019, 1, 100004. [Google Scholar] [CrossRef]
- Herrmann, M.; Tani, M.; Sakai, K.; Fukasawa, R. Terahertz imaging of silicon wafers. J. Appl. Phys. 2002, 91, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Kiwa, T.; Tonouchi, M.; Yamashita, M.; Kawase, K. Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 2003, 28, 2058–2060. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Kawase, K.; Otani, C.; Kiwa, T.; Tonouchi, M. Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 2005, 13, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Otani, C.; Kawase, K.; Nikawa, K.; Tonouchi, M. Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Appl. Phys. Lett. 2008, 93, 041117. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Otani, C.; Kim, S.; Murakami, H.; Tonouchi, M.; Matsumoto, T.; Midoh, Y.; Miura, K.; Nakamae, K.; Nikawa, K. Laser THz emission microscope as a novel tool for LSI failure analysis. Microelectron. Reliab. 2009, 49, 1116–1126. [Google Scholar] [CrossRef]
- Yamashita, M.; Otani, C.; Kawase, K.; Matsumoto, T.; Nikawa, K.; Kim, S.; Murakami, H.; Tonouchi, M. Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope. Appl. Phys. Lett. 2009, 94, 191104. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Otani, C.; Matsumoto, T.; Midoh, Y.; Miura, K.; Nakamae, K.; Nikawa, K.; Kim, S.; Murakami, H.; Tonouchi, M. THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis. Opt. Express 2011, 19, 10864–10873. [Google Scholar] [CrossRef]
- Murakami, H.; Serita, K.; Maekawa, Y.; Fujiwara, S.; Matsuda, E.; Kim, S.; Kawayama, I.; Tonouchi, M. Scanning laser THz imaging system. J. Phys. D Appl. Phys. 2014, 47, 374007. [Google Scholar] [CrossRef]
- Van Hoof, N.J.J.; Huurne, S.E.T.T.; Rivas, J.G.; Halpin, A. Time-resolved terahertz time-domain near-field microscopy. Opt. Express 2018, 26, 32118–32129. [Google Scholar] [CrossRef]
- Huber, A.J.; Keilmann, F.; Wittborn, J.; Aizpurua, J.; Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 2008, 8, 3766–3770. [Google Scholar] [CrossRef]
- Nagel, M.; Michalski, A.; Kurz, H. Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry. Opt. Express 2011, 19, 12509–12514. [Google Scholar] [CrossRef]
- Burford, N.M.; El-Shenawee, M.O.; O’neal, C.B.; Olejniczak, K.J. Terahertz imaging for nondestructive evaluation of packaged power electronic devices. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 395–401. [Google Scholar]
- Ahi, K.; Shahbazmohamadi, S.; Asadizanjani, N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 2018, 104, 274–284. [Google Scholar] [CrossRef]
- Shur, M.; Rudin, S.; Rupper, G.; Reed, M.; Suarez, J. Sub-terahertz testing of millimeter wave Monolithic and very large scale integrated circuits. Solid State Electron. 2019, 155, 44–48. [Google Scholar] [CrossRef]
- Salek, K.A.; Kawayama, I.; Murakami, H.; Tonouchi, M. Evaluation of solar cell using terahertz time-domain spectroscopy. Phys. Sci. Int. J. 2015, 6, 96. [Google Scholar] [CrossRef]
- Nakanishi, H.; Fujiwara, S.; Takayama, K.; Kawayama, I.; Murakami, H.; Tonouchi, M. Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope. Appl. Phys. Express 2012, 5, 112301. [Google Scholar] [CrossRef]
- Salek, K.A.; Nakanishi, H.; Ito, A.; Kawayama, I.; Murakami, H.; Tonouchi, M. Laser terahertz emission microscopy studies of a polysilicon solar cell under the illumination of continuous laser light. Opt. Eng. 2013, 53, 031204. [Google Scholar] [CrossRef]
- Nakanishi, H.; Ito, A.; Takayama, K.; Kawayama, I.; Murakami, H.; Tonouchi, M. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell. AIP Adv. 2015, 5, 117129. [Google Scholar] [CrossRef]
- Minkevičius, L.; Suzanovičienė, R.; Molis, G.; Krotkus, A.; Balakauskas, S.; Venckevičius, R.; Kašalynas, I.; Seliuta, D.; Valušis, G.; Tamošiūnas, V. Solar cell imaging and characterization by terahertz techniques. In Terahertz Emitters, Receivers, and Applications III; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 15 October 2012; p. 849613. [Google Scholar]
- Minkevicius, L.; Suzanoviciene, R.; Balakauskas, S.; Molis, G.; Krotkus, A.; Valusis, G.; Tamosiunas, V. Detection of tab wire soldering defects on silicon solar cells using terahertz time-domain spectroscopy. Electron. Lett. 2012, 48, 932–934. [Google Scholar] [CrossRef]
- Nagel, M.; Safiei, A.; Sawallich, S.; Matheisen, C.; Pletzer, T.M.; Mewe, A.A.; van der Borg, N.J.C.M.; Cesar, I.; Kurz, H. THz microprobe system for contact-free high-resolution sheet resistance imaging. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Villepinte, Frankreich, 30 September–4 October 2013; pp. 856–860. [Google Scholar]
- Sawallich, S.; Matheisen, C.; Nagel, M.; Cesar, I. High-resolution interdigitated back contact solar cell inspection using Terahertz microprobes. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; pp. 1–2. [Google Scholar]
- Spinelli, P.; Danzl, P.; Guillevin, N.; Mewe, A.; Sawallich, S.; Vlooswijk, A.; van de Loo, B.; Kessels, E.; Nagel, M.; Cesar, I. High resolution sheet resistance mapping to unveil edge effects in industrial IBC solar cells. Energy Procedia 2016, 92, 218–224. [Google Scholar] [CrossRef]
- Spinelli, P.; Danzl, F.J.K.; Deligiannls, D.; Guillevin, N.; Burgers, A.R.; Sawallich, S.; Nage, M.; Cesar, I. High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 3150–3154. [Google Scholar]
- Cesar, I.; Guillevin, N.; Mewe, A.A.; Spinelli, P.; Burgers, A.R.; Rosca, V.; Okel, L.A.G.; Geerligs, B.J.; Weeber, A.W.; Sawallich, S.; et al. Enablers for IBC: Integral cell and module development and implementation in PV industry. Energy Procedia 2017, 124, 834–841. [Google Scholar] [CrossRef]
- Buron, J.D.; Pizzocchero, F.; Jepsen, P.U.; Petersen, D.H.; Caridad, J.M.; Jessen, B.S.; Booth, T.J.; Bøggild, P. Graphene mobility mapping. Sci. Rep. 2015, 5, 12305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, D.; Buron, J.C.D.; Bøggild, P.; Jepsen, P.U.; Petersen, D.H. Contactless graphene conductance measurements: the effect of device fabrication on terahertz time-domain spectroscopy. Int. J. Nanotechnol. 2016, 13, 591–596. [Google Scholar] [CrossRef]
- Lin, H.; Braeuninger-Weimer, P.; Kamboj, V.S.; Jessop, D.S.; Degl’Innocenti, R.; Beere, H.E.; Ritchie, D.A.; Zeitler, J.A.; Hofmann, S. Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy. Sci. Rep. 2017, 7, 10625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, D.M.A.; Buron, J.D.; Whelan, P.R.; Caridad, J.M.; Bjergfelt, M.; Luo, B.; Shivayogimath, A.; Smitshuysen, A.L.; Thomsen, J.D.; Booth, T.J.; et al. Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements. Nano Res. 2017, 10, 3596–3605. [Google Scholar] [CrossRef] [Green Version]
- Laib, J.P.; Mittleman, D.M. Temperature-dependent terahertz spectroscopy of liquid n-alkanes. J. Infrared Millim. Terahertz Waves 2010, 31, 1015–1021. [Google Scholar] [CrossRef]
- Nickel, D.V.; Garza, A.J.; Scuseria, G.E.; Mittleman, D.M. The isotropic molecular polarizabilities of single methyl-branched alkanes in the terahertz range. Chem. Phys. Lett. 2014, 592, 292–296. [Google Scholar] [CrossRef]
- Yin, M.; Tang, S.; Tong, M. The application of terahertz spectroscopy to liquid petrochemicals detection: A review. Appl. Spectrosc. Rev. 2016, 51, 379–396. [Google Scholar] [CrossRef]
- Zhan, H.; Wu, S.; Bao, R.; Ge, L.; Zhao, K. Qualitative identification of crude oils from different oil fields using terahertz time-domain spectroscopy. Fuel 2015, 143, 189–193. [Google Scholar] [CrossRef]
- Bao, R.M.; Li, Y.; Zhan, H.; Zhao, K.; Wang, W.; Ma, Y.; Wu, J.; Liu, S.; Li, S.; Xiao, L. Probing the oil content in oil shale with terahertz spectroscopy. Sci. China Phys. Mech. Astron. 2015, 58, 114211. [Google Scholar] [CrossRef]
- Matoug, M.M.; Gordon, R. Crude Oil Asphaltenes Studied by Terahertz Spectroscopy. ACS Omega 2018, 3, 3406–3412. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, K.; Fu, C.; Xiao, L. Characterization of morphology and structure of wax crystals in waxy crude oils by terahertz time-domain spectroscopy. Energy Fuels 2017, 31, 1416–1421. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhou, J.; Guo, X.S.; Ji, B.B.; Zhou, W.; Li, D.H. Terahertz Spectral Properties of Coal Tar. J. Appl. Spectrosc. 2018, 85, 840–844. [Google Scholar] [CrossRef]
- Jin, W.-J.; Zhao, K.; Yang, C.; Xu, C.-H.; Ni, H.; Chen, S.-H. Experimental measurements of water content in crude oil emulsions by terahertz time-domain spectroscopy. Appl. Geophys. 2013, 10, 506–509. [Google Scholar] [CrossRef]
- Guan, L.; Zhan, H.; Miao, X.; Zhu, J.; Zhao, K. Terahertz-dependent evaluation of water content in high-water-cut crude oil using additive-manufactured samplers. Sci. China Phys. Mech. Astron. 2017, 60, 044211. [Google Scholar] [CrossRef]
- Saied, I.M.; Meribout, M.; Kato, E.; Zhao, X.H. Terahertz spectroscopy for measuring multiphase fractions. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 250–259. [Google Scholar] [CrossRef]
- Song, Y.; Zhan, H.L.; Zhao, K.; Miao, X.Y.; Lu, Z.Q.; Bao, R.M.; Zhu, J.; Xiao, L.Z. Simultaneous characterization of water content and distribution in high-water-cut crude oil. Energy Fuels 2016, 30, 3929–3933. [Google Scholar] [CrossRef]
- Arik, E.; Altan, H.; Esenturk, O. Dielectric properties of diesel and gasoline by terahertz spectroscopy. J. Infrared Millim. Terahertz Waves 2014, 35, 759–769. [Google Scholar] [CrossRef]
- Li, Y.-N.; Li, J.; Zeng, Z.-M.; Li, J.; Tian, Z.; Wang, W.-K. Terahertz spectroscopy for quantifying refined oil mixtures. Appl. Opt. 2012, 51, 5885–5889. [Google Scholar] [CrossRef]
- Li, Y.-N.; Zeng, Z.-M.; Li, J.; Tian, Z.; Sun, L.-J.; Zhou, N. Terahertz quantitatively distinguishing gasoline mixtures using multiparameter-combined analysis. Appl. Opt. 2013, 52, 7382–7388. [Google Scholar] [CrossRef]
- Li, J.; Tian, Z.; Chen, Y.; Cao, W.; Zeng, Z. Distinguishing octane grades in gasoline using terahertz metamaterials. Appl. Opt. 2012, 51, 3258–3262. [Google Scholar] [CrossRef]
- Al-Douseri, F.M.; Chen, Y.; Zhang, X.-C. THz wave sensing for petroleum industrial applications. Int. J. Infrared Millim. Waves 2006, 27, 481–503. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, K.; Tian, L.; Zhao, S.; Zhou, Q.; Shi, Y.; Zhao, D.; Zhang, C. Spectrum features of commercial derv fuel oils in the terahertz region. Sci. China Phys. Mech. Astron. 2012, 55, 195–198. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, K.; Bao, R. Fuel property determination of biodiesel-diesel blends by terahertz spectrum. Int. J. Infrared Millim. Waves 2012, 33, 522–528. [Google Scholar] [CrossRef]
- Arik, E.; Altan, H.; Esenturk, O. Dielectric properties of ethanol and gasoline mixtures by terahertz spectroscopy and an effective method for determination of ethanol content of gasoline. J. Phys. Chem. A 2014, 118, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Zhao, K.; Zhao, H.; Li, Q.; Zhu, S.; Xiao, L. The spectral analysis of fuel oils using terahertz radiation and chemometric methods. J. Phys. D Appl. Phys. 2016, 49, 395101. [Google Scholar] [CrossRef]
- Qin, F.; Li, Q.; Zhan, H.; Jin, W.; Liu, H.; Zhao, K. Probing the sulfur content in gasoline quantitatively with terahertz time-domain spectroscopy. Sci. China Phys. Mech. Astron. 2014, 57, 1404–1406. [Google Scholar] [CrossRef]
- Adbul-Munaim, A.M.; Reuter, M.; Koch, M.; Watson, D.G. Distinguishing gasoline engine oils of different viscosities using terahertz time-domain spectroscopy. Int. J. Infrared Millim. Waves 2015, 36, 687–696. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, Q.; Jin, B.; Zhao, K.; Zhao, S.; Shi, Y.; Zhang, C. Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range. Sci. China Ser. G Phys. Mech. Astron. 2009, 52, 1938–1943. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Aller, M.M.; Preu, S.; Watson, D.G. Discriminating gasoline fuel contamination in engine oil by terahertz time-domain spectroscopy. Tribol. Int. 2018, 119, 123–130. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Ornik, J.; Koch, M.; Watson, D.G. Terahertz Time Domain Spectroscopy to Detect Different Oxidation Levels of Diesel Engine Oil. Lubricants 2019, 7, 18. [Google Scholar] [CrossRef]
- Nishimura, N.; Ogura, R.; Matsumoto, S.; Mizuno, M.; Fukunaga, K. Study of molecular behavior in oxidation of insulating oil using terahertz spectroscopy. Electr. Eng. Jpn. 2013, 183, 9–15. [Google Scholar] [CrossRef]
- Nishimura, N.; Ogura, R.; Matsumoto, S.; Mizuno, M.; Fukunaga, K. Transmittance spectra of oxidized insulation oil using terahertz spectroscopy. In Proceedings of the 2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 26–30 June 2011; pp. 1–4. [Google Scholar]
- Kang, S.B.; Kim, W.-S.; Chung, D.C.; Joung, J.M.; Kwak, M.H. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy. J. Korean Phys. Soc. 2017, 71, 986–992. [Google Scholar] [CrossRef]
- Li, M.; Tong, M.-M.; Fletcher, J.E.; Dong, Z.-Y. A novel approach to investigate the deterioration of insulation of oils in power transformers with terahertz time-domain spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 930–938. [Google Scholar] [CrossRef]
- Gorenflo, S.; Tauer, U.; Hinkov, I.; Lambrecht, A.; Buchner, R.; Helm, H. Dielectric properties of oil–water complexes using terahertz transmission spectroscopy. Chem. Phys. Lett. 2006, 421, 494–498. [Google Scholar] [CrossRef]
- Abdul-Munaim, A.M.; Reuter, M.; Abdulmunem, O.M.; Balzer, J.; Koch, M.; Watson, D.G. Using terahertz time-domain spectroscopy to discriminate among water contamination levels in diesel engine oil. Trans. ASABE 2016, 59, 795–801. [Google Scholar]
- Majewski, A. Terahertz Spectroscopy: High-resolution terahertz spectrometer sniffs out chemicals. Laser Focus World 2008, 44, 4. [Google Scholar]
- Yang, L.; Guo, T.; Zhang, X.; Cao, S.; Ding, X. Toxic chemical compound detection by terahertz spectroscopy: A review. Rev. Anal. Chem. 2018, 37. [Google Scholar] [CrossRef]
- Smith, R.M.; Arnold, M.A. Selectivity of terahertz gas-phase spectroscopy. Anal. Chem. 2015, 87, 10679–10683. [Google Scholar] [CrossRef] [PubMed]
- Graber, B.; Kim, C.; Wu, D.H. High SNR single measurements of trace gas phase spectra at THz frequencies. Appl. Phys. Lett. 2017, 111, 221107. [Google Scholar] [CrossRef]
- Medvedev, I.R.; Behnke, M.; de Lucia, F.C. Fast analysis of gases in the submillimeter∕ terahertz with “absolute” specificity. Appl. Phys. Lett. 2005, 86, 154105. [Google Scholar] [CrossRef]
- Neese, C.F.; Medvedev, I.R.; Plummer, G.M.; Frank, A.J.; Ball, C.D.; de Lucia, F.C. Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity. IEEE Sens. J. 2012, 12, 2565–2574. [Google Scholar] [CrossRef]
- Tekawade, A.; Rice, T.E.; Oehlschlaeger, M.A.; Mansha, M.W.; Wu, K.; Hella, M.M.; Wilke, I. Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics. Appl. Phys. B 2018, 124, 105. [Google Scholar] [CrossRef]
- Schmalz, K.; Rothbart, N.; Eissa, M.H.; Borngräber, J.; Kissinger, D.; Hübers, H.-W. Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222–270 GHz. AIP Adv. 2019, 9, 015213. [Google Scholar] [CrossRef]
- Hindle, F.; Kuuliala, L.; Mouelhi, M.; Cuisset, A.; Bray, C.; Vanwolleghem, M.; Devlieghere, F.; Mouret, G.; Bocquet, R. Monitoring of food spoilage by high resolution THz analysis. Analyst 2018, 143, 5536–5544. [Google Scholar] [CrossRef] [PubMed]
- Neumaier, P.F.-X.; Schmalz, K.; Borngräber, J.; Wylde, R.; Hübers, H.-W. Terahertz gas-phase spectroscopy: chemometrics for security and medical applications. Analyst 2015, 140, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Zhao, K.; Bao, R.; Xiao, L. Monitoring PM2. 5 in the atmosphere by using terahertz time-domain spectroscopy. J. Infrared Millim. Terahertz Waves 2016, 37, 929–938. [Google Scholar] [CrossRef]
- Wu, C.; Miao, X.; Zhao, K. Identifying PM 2.5 samples collected in different environment by using terahertz time-domain spectroscopy. Front. Optoelectron. 2018, 11, 256–260. [Google Scholar] [CrossRef]
- Hepp, C.; Lüttjohann, S.; Roggenbuck, A.; Deninger, A.; Nellen, S.; Göbel, T.; Jörger, M.; Harig, R. A cw-terahertz gas analysis system with ppm detection limits. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Shimizu, N.; Ikari, T.; Kikuchi, K.; Matsuyama, K.; Wakatsuki, A.; Kohjiro, S.; Fukasawa, R. Remote gas sensing in full-scale fire with sub-terahertz waves. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Fosnight, A.M.; Moran, B.L.; Medvedev, I.R. Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Appl. Phys. Lett. 2013, 103, 133703. [Google Scholar] [CrossRef]
- Schmalz, K.; Rothbart, N.; Neumaier, P.F.; Borngräber, J.; Hübers, He.; Kissinger, D. Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans. Microw. Theory Tech. 2017, 65, 1807–1818. [Google Scholar] [CrossRef]
- Rothbart, N.; Holz, O.; Koczulla, R.; Schmalz, K.; Hübers, He. Analysis of Human Breath by Millimeter-Wave/Terahertz Spectroscopy. Sensors 2019, 19, 2719. [Google Scholar] [CrossRef]
- Ge, L.N.; Zhan, H.L.; Leng, W.X.; Zhao, K.; Xiao, L.Z. Optical characterization of the principal hydrocarbon components in natural gas using terahertz spectroscopy. Energy Fuels 2015, 29, 1622–1627. [Google Scholar] [CrossRef]
- Leng, W.; Zhan, H.; Ge, L.; Wang, W.; Ma, Y.; Zhao, K.; Li, S.; Xiao, L. Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy. Fuel 2015, 159, 84–88. [Google Scholar] [CrossRef]
- Banerjee, D.; von Spiegel, W.; Thomson, M.D.; Schabel, S.; Roskos, H.G. Diagnosing water content in paper by terahertz radiation. Opt. Express 2008, 16, 9060–9066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, P.; Haran, F.; Jez, D.; Santosa, F.; Dodge, J.S. Simultaneous composition and thickness measurement of paper using terahertz time-domain spectroscopy. Appl. Opt. 2009, 48, 6541–6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, T.; Kumon, H.; Tamazumi, H. Terahertz spectroscopic characterization of paper. In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 5–10 September 2010; pp. 1–2. [Google Scholar]
- Merbold, H.; Maas, D.J.H.C.; van Mechelen, J.L.M. Multiparameter sensing of paper sheets using terahertz time-domain spectroscopy: Caliper, fiber orientation, moisture, and the role of spatial inhomogeneity. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Van Mechelen, J.L.M.; Kuzmenko, A.B.; Merbold, H. Stratified dispersive model for material characterization using terahertz time-domain spectroscopy. Opt. Lett. 2014, 39, 3853–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mechelen, J.L.M.; Maas, D.J.H.C.; Merbold, H. Paper sheet parameter determination using terahertz spectroscopy. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; pp. 1–2. [Google Scholar]
- Fan, M.; Cao, B.; Tian, G. Enhanced measurement of paper basis weight using phase shift in terahertz time-domain spectroscopy. J. Sens. 2017, 2017, 3520967. [Google Scholar] [CrossRef]
- Khani, B.; Hu, Y.; Rymanov, V.; Brenner, C.; Hofmann, M.; Stöhr, A. Compact Optoelectronic Continuous Wave Terahertz Spectroscopy System (230–400 GHz) for Paper Sorting and Characterization. In The European Conference on Lasers and Electro-Optics; Optical Society of America: Washington, DC, USA, 2017. [Google Scholar]
- Yan, G.; Markov, A.; Chinifooroshan, Y.; Tripathi, S.M.; Bock, W.J.; Skorobogatiy, M. Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings. Opt. Lett. 2013, 38, 2200–2202. [Google Scholar] [CrossRef] [PubMed]
- Huber, P.; Martinez, P.; Guers, C.; Garet, F.; Borel, P. Dielectric Losses of Paper in the THz Domain: Literature Review, Needs for Future Research, and Prospective Solutions. Phys. Status Solidi 2017, 214, 1700356. [Google Scholar] [CrossRef]
- Wang, L.; Tang, C.; Zhu, S.; Zhou, S. Terahertz time domain spectroscopy of transformer insulation paper after thermal aging intervals. Materials 2018, 11, 2124. [Google Scholar] [CrossRef]
- Vassilev, V.; Stoew, B.; Blomgren, J.; Andersson, G. A mm-wave sensor for remote measurement of moisture in thin paper layers. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 770–778. [Google Scholar] [CrossRef]
- Brinkmann, S.; Vieweg, N.; Gärtner, G.; Plew, P.; Deninger, A. Towards quality control in pharmaceutical packaging: Screening folded boxes for package inserts. J. Infrared Millim. Terahertz Waves 2017, 38, 339–346. [Google Scholar] [CrossRef]
- Reid, M.; Fedosejevs, R. Terahertz birefringence and attenuation properties of wood and paper. Appl. Opt. 2006, 45, 2766–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todoruk, T.M.; Hartley, I.D.; Reid, M.E. Origin of birefringence in wood at terahertz frequencies. IEEE Trans. Terahertz Sci. Technol. 2011, 2, 123–130. [Google Scholar] [CrossRef]
- Reid, M.E.; Hartley, I.D.; Todoruk, T.M. Terahertz applications in the wood products industry. In Handbook of Terahertz Technology for Imaging, Sensing and Communications; Woodhead Publishing: Cambridge, UK, 2013; pp. 547–578. [Google Scholar]
- Inagaki, T.; Ahmed, B.; Hartley, I.D.; Tsuchikawa, S.; Reid, M. Simultaneous prediction of density and moisture content of wood by terahertz time domain spectroscopy. J. Infrared Millim. Terahertz Waves 2014, 35, 949–961. [Google Scholar] [CrossRef]
- Inagaki, T.; Hartley, I.D.; Tsuchikawa, S.; Reid, M. Prediction of oven-dry density of wood by time-domain terahertz spectroscopy. Holzforschung 2014, 68, 61–68. [Google Scholar] [CrossRef]
- Krügener, K.; Sommer, S.; Stübling, E.; Jachim, R.; Koch, M.; Viöl, W. THz Properties of Typical Woods Important for European Forestry. J. nfrared Millim. Terahertz Waves 2019, 40, 770–774. [Google Scholar] [CrossRef] [Green Version]
- Krügener, K.; Stübling, E.-M.; Jachim, R.; Kietz, B.; Koch, M.; Viöl, W. THz tomography for detecting damages on wood caused by insects. Appl. Opt. 2019, 58, 6063–6066. [Google Scholar] [CrossRef]
- QYResearch. Available online: https://www.qyresearch.com/index/detail/1172368/global-terahertz-thz-technology-market (accessed on 27 September 2019).
- Research and Markets: the World’s Largest Market Research Store. Available online: https://www.researchandmarkets.com/research/xmr4gt/global_terahertz?w=4 (accessed on 27 September 2019).
- Coherent Market Insights. Available online: https://www.coherentmarketinsights.com/market-insight/terahertz-components-and-systems-market-596 (accessed on 27 September 2019).
- Tematys: Exploration of Photonics Markets. Available online: https://tematys.fr/Publications/en/terahertz/39-terahertz-components-systems-technology-and-market-trends-update-2016.html (accessed on 27 September 2019).
- Markets and Markets. Available online: https://www.marketsandmarkets.com/PressReleases/terahertz-technology.asp (accessed on 27 September 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naftaly, M.; Vieweg, N.; Deninger, A. Industrial Applications of Terahertz Sensing: State of Play. Sensors 2019, 19, 4203. https://doi.org/10.3390/s19194203
Naftaly M, Vieweg N, Deninger A. Industrial Applications of Terahertz Sensing: State of Play. Sensors. 2019; 19(19):4203. https://doi.org/10.3390/s19194203
Chicago/Turabian StyleNaftaly, Mira, Nico Vieweg, and Anselm Deninger. 2019. "Industrial Applications of Terahertz Sensing: State of Play" Sensors 19, no. 19: 4203. https://doi.org/10.3390/s19194203
APA StyleNaftaly, M., Vieweg, N., & Deninger, A. (2019). Industrial Applications of Terahertz Sensing: State of Play. Sensors, 19(19), 4203. https://doi.org/10.3390/s19194203