Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots
Abstract
:1. Introduction
2. Theory and Concept
2.1. C-OTDR and Standard Optical Fiber
2.2. C-OTDR and Structured Optical Fiber
2.3. Change of Local Interferometer Phase with Temperature Variation
3. Characteristics of Scattering Dots
4. Regularization of Transfer Function
4.1. Sensing Fiber and Experimental Setup
4.2. Results
5. Simultaneous DVS and DTGS
6. DVS Performance Benefits of Using Scattering Dots fFber
6.1. Motivation Power Cable Monitoring
6.2. Experimental Setup
6.3. Resolution of Sub-Hertz Vibrations
6.4. Fading Mitigation
6.5. Sensitivity Boost at Long Sensing Distances
7. Conclusions/Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
C-OTDR | coherent optical time domain reflectometry |
DVS | distributed vibration sensing |
DAS | distributed acoustic sensing |
DTS | distributed temperature sensing |
DTGS | distributed temperature gradient sensing |
FBG | fiber Bragg grating |
OFDR | optical frequency domain reflectometry |
SMF | single mode fiber |
FFT | fast Fourier transform |
STFT | short time Fourier transform |
PSD | power spectral density |
ULL | ultra low loss |
FUT | fiber under test |
References
- Choi, K.N.; Juarez, J.C.; Taylor, H.F. Distributed fiber optic pressure/seismic sensor for low-cost monitoring of long perimeters. Proc. SPIE 2003, 5090. [Google Scholar] [CrossRef]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Kirkendall, C.K.; Bartolo, R.; Salzano, J.; Daley, K. Distributed Fiber Optic Sensing for Homeland Security; NAVAL Research Laboratory: Washington, DC, USA, 2007; pp. 195–196. [Google Scholar]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781482259575. [Google Scholar]
- Hicke, K.; Hussels, M.-T.; Eisermann, R.; Chruscicki, S.; Krebber, K. Condition monitoring of industrial infrastructures using distributed fibre optic acoustic sensors. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 2016, 87, 011501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muanenda, Y. Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry. J. Sens. 2018, 2018, 3897873. [Google Scholar] [CrossRef]
- Shatalin, S.V.; Treschikov, V.N.; Rogers, A.J. Interferometric optical time-domain reflectometry for distributed optical-fibre sensing. Appl. Opt. 1998, 37, 5600–5604. [Google Scholar] [CrossRef] [PubMed]
- Posey, R.; Johnson, G.A.; Vohra, S.T. Rayleigh scattering based distributed sensing system for structural monitoring. Proc. SPIE 2000, 4185, 41850E. [Google Scholar]
- Liokumovich, L.B.; Ushakov, N.A.; Kotov, O.I.; Bisyarin, M.A.; Hartog, A.H. Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions. J. Lightwave Technol. 2015, 33, 3660–3671. [Google Scholar] [CrossRef]
- Healey, P. Fading in Heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Ames, G.H.; Donat, W.R. Fading statistics in Rayleigh interferometric fiber sensors. Proc. SPIE 2014, 9157, 915767. [Google Scholar]
- Rohwetter, P.; Eisermann, R.; Krebber, K. Random Quadrature Demodulation for Direct Detection Single-Pulse Rayleigh C-OTDR. J. Lightwave Technol. 2016, 34, 4437–4444. [Google Scholar] [CrossRef]
- Posey, R.J.; Johnson, G.A.; Vohra, S.T. Strain sensing based on coherent Rayleigh scattering in an optical fibre. Electron. Lett. 2000, 36, 1688–1899. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, T.; Chen, L.; Bao, X. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. J. Lightwave Technol. 2010, 28, 22. [Google Scholar]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G.; Potapov, V.T.; Sergachev, I.A.; Simikin, D.E. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses. Quantum Electron. 2014, 44, 965–969. [Google Scholar] [CrossRef]
- Alekseev, A.E.; Vdovenko, V.S.; Gorshkov, B.G.; Potapov, V.T.; Simikin, D.E. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal. Laser Phys. 2015, 25, 065101. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Shang, Y.; Liu, X.; Peng, G. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry. Opt. Commun. 2015, 346, 172–177. [Google Scholar] [CrossRef]
- Muanenda, Y.; Faralli, S.; Oton, C.J.; Di Pasquale, F. Dynamic phase extraction in a modulated double-pulse phi-OTDR sensor using a stable homodyne demodulation in direct detection. Opt. Express 2018, 26, 687–701. [Google Scholar] [CrossRef]
- Koyamada, Y.; Imahama, M.; Kubota, K.; Hogari, K. Fiber-Optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J. Lightwave. Technol. 2009, 27, 1142–1146. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, F.; Wang, X.; Pan, Y.; Sun, Z.; Hua, J.; Zhang, X. Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR. IEEE Photonics Technol. Lett. 2015, 27, 1884–1887. [Google Scholar] [CrossRef]
- Pastor-Graells, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef] [PubMed]
- Liehr, S.; Muanenda, Y.S.; Münzenberger, S.; Krebber, K. Relative change measurement of physical quantities using dual-wavelength coherent OTDR. Opt. Express 2017, 25, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Liehr, S.; Münzenberger, S.; Krebber, K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing. Opt. Express 2018, 26, 10573–10588. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shang, Y.; Liu, X.-H.; Wang, C.; Yu, H.-H.; Jiang, D.-S.; Peng, G.-D. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings. Opt. Express 2015, 23, 29038–29046. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhang, Y.; Xia, L.; Wu, X.; Zhang, X. Improved Φ-otdr sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. J. Lightwave Technol. 2015, 33, 4775–4780. [Google Scholar]
- Zhang, X.; Guo, Z.; Shan, Y.; Sun, Z.; Fu, S.; Zhang, Y. Enhanced Φ-OTDR system for quantitative strain measurement based on ultra-weak fiber Bragg grating array. Opt. Eng. 2016, 55, 5. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Qiao, W.; Shan, Y.; Cai, Y.; Zhang, X. Improved Φ-OTDR system with narrow pulses for quantitative strain measurement based on ultra-weak fiber bragg grating array. Microwave Opt. Technol. Lett. 2016, 58, 2892–2894. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Shan, Y.; Li, Y.; Wang, F.; Zeng, J.; Zhang, Y. A High Performance Distributed Optical Fiber Sensor Based on Φ-OTDR for Dynamic Strain Measurement. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Tang, J.; Li, L.; Guo, H.; Yu, H.; Wen, H.; Yang, M. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Liu, T.; Wang, F.; Zhang, X.; Zhang, L.; Yuan, Q.; Liu, Y.; Yan, Z. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse. Opt. Eng. 2017, 56, 084104. [Google Scholar] [CrossRef]
- Li, C.; Mei, Z.; Tang, J.; Yang, K.; Yang, M. Distributed Acoustic Sensing System Based on Broadband Ultra-Weak Fiber Bragg Grating Array. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Li, Z.; Tong, Y.; Fu, X.; Wang, J.; Guo, Q.; Yu, H.; Bao, X. Simultaneous distributed static and dynamic sensing based on ultra-short fiber Bragg gratings. Opt. Express 2018, 26, 17437–17446. [Google Scholar] [CrossRef] [PubMed]
- Muanenda, Y.; Faralli, S.; OTON, C.J.; Cheng, C.; Yang, M.; Di Pasquale, F. Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection. Opt. Express 2019, 27, 10644–10658. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Ji, W.; Dong, X.; Cao, L.; Zabihi, M.; Wang, Q.; Zhang, Y.; Zhang, X. An Enhanced Distributed Acoustic Sensor Based on UWFBG and Self-Heterodyne Detection. J. Lightwave Technol. 2019, 37, 2700–2705. [Google Scholar] [CrossRef]
- Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Shenk, S. Kilometer length, low loss enhanced back scattering fiber for distributed sensing. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Westbrook, P.S.; Kremp, T.; Feder, K.S.; Ko, W.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Ortiz, R.M. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Handerek, V.A.; Karimi, M.; Nkansah, A.; Yau, A.; Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; et al. Improved Optical Power Budget in Distributed Acoustic Sensing Using Enhanced Scattering Optical Fibre. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Dakin, J.P.; Wade, C.A.; Henning, M. Novel optical fibre hydrophone array using a single laser source and detector. Electron. Lett. 1984, 20, 53–54. [Google Scholar] [CrossRef]
- Kersey, A.D.; Dandridge, A. Analysis of Intrinsic Intrinsic Crosstalk in Tapped-Serial and Fabry-Perot Interferometric Fiber Sensor Arrays. Proc. SPIE 1988, 985, 113–124. [Google Scholar]
- Ribeiro, A.L.; Caleya, R.F.; Santos, J.L. Progressive ladder network topology combining interferometric and intensity fiber-optic-based sensors. Appl. Opt. 1995, 34, 6481–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersey, A.D.; Dandridge, A.; Davis, A.R.; Kirdendall, C.K.; Marrone, M.J.; Gross, D.G. 64-element time-division multiplexed interferometric sensor array with EDFA telemetry. In Optical Fiber Communication Conference. OSA Tech. Digest Ser. 1996, 2, ThP5. [Google Scholar]
- Vohra, S.; Dandridge, A.; Danver, B.; Tveten, A. An Hybrid WDM/TDM Reflectometric Array. In Proceedings of the Optical Fiber Sensors Conference 1996, Sapporo, Japan, 21 May 1996. [Google Scholar]
- Kersey, A.D. Array Topologies for Implementing Serial Fiber Bragg Grating Interferometer Arrays. U.S. Patent US5987197A, 7 November 1997. [Google Scholar]
- Guo, H.Y.; Tang, J.G.; Li, X.F.; Zheng, Y.; Yu, H.F. On-line writing weak fiber Bragg gratings array. Chin. Opt. Lett. 2013, 11, 030602. [Google Scholar]
- Guo, H.; Liu, F.; Yuan, Y.; Yu, H.; Yang, M. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber. Opt. Express 2015, 23, 4829–4838. [Google Scholar] [CrossRef]
- Liehr, S.; Burgmeier, J.; Krebber, K.; Schade, W. Fiber optic bend and temperature sensing in femtosecond laser-structured POF. In Proceedings of the 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 October 2012. [Google Scholar]
- Liehr, S.; Burgmeier, J.; Krebber, K.; Schade, W. Femtosecond Laser Structuring of Polymer Optical Fibers for Backscatter Sensing. J. Lightwave Technol. 2013, 31. [Google Scholar] [CrossRef]
- Eisermann, R.; Hicke, K.; Krebber, K. C-OTDR Based Quasi-distributed Vibration Sensing Using High Scattering Fiber Segments-Performance for Subhertz Dynamic Strain Events. In Proceedings of the EAGE/DGG Workshop 2017, Potsdam, Germany, 31 March 2017. [Google Scholar]
- Eisermann, R.; Rohwetter, P.; Hicke, K. Reducing sensitivity fading in C-OTDR by use of enhanced scattering fiber segments. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Donko, A.; Beresna, M.; Jung, Y.; Hayes, J.; Richardson, D.J.; Brambilla, G. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber. Opt. Express 2018, 26, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Donko, A.; Sandoghchi, R.; Masoudi, A.; Beresna, M.; Brambilla, G. Low-Loss Micro-Machined Fiber With Rayleigh Backscattering Enhanced By Two Orders Of Magnitude. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Donko, A.; Sandoghchi, R.; Masoudi, A.; Beresna, M.; Brambilla, G. Surpassing the detection limits of current distributed acoustic sensing systems (Conference Presentation). Proc. SPIE 2019, 11000, 110000K. [Google Scholar]
- Burgmeier, J.; Waltermann, C.; Flachenecker, G.; Schade, W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Opt. Lett. 2014, 39, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Waltermann, C.; Doering, A.; Köhring, M.; Angelmahr, M.; Schade, W. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing. Opt. Lett. 2015, 40, 3109–3112. [Google Scholar] [CrossRef] [PubMed]
- Waltermann, C.; Bethmann, K.; Doering, A.; Jiang, Y.; Baumann, A.L.; Angelmahr, M.; Schade, W. Multiple off-axis fiber Bragg gratings for 3D shape sensing. Appl. Opt. 2018, 57, 8125–8133. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, A.; Pastor-Graells, J.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. Distributed detection of temperature gradients with single-wavelength phase-sensitive OTDR and speckle analysis methods. Proc. SPIE 2016, 9916, 99162R. [Google Scholar]
- Garcia-Ruiz, A.; Pastor-Graells, J.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. Speckle Analysis Method for Distributed Detection of Temperature Gradients With ΦOTDR. IEEE Photonics Technol. Lett. 2016, 28, 2000–2003. [Google Scholar] [CrossRef]
- Worzyk, T. Submarine Power Cables; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783642269165. [Google Scholar]
- Hicke, K.; Krebber, K. Towards efficient real-time submarine power cable monitoring using distributed fibre optic acoustic sensors. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Masoudi, A.; Pilgrim, J.A.; Newson, T.P.; Brambilla, G. Subsea Cable Condition Monitoring with Distributed Optical Fibre Vibration Sensor. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar]
- Cedilnik, G.; Lees, G.; Schmidt, P.E.; Herstrøm, S.; Geisler, T. Ultra-Long Reach Fiber Distributed Acoustic Sensing for Power Cable Monitoring. In Proceedings of the JICABLE’19—10th International Conference on Power Insulated Cables, Versailles, France, 23–27 June 2019. [Google Scholar]
- Bush, J.; Suh, K. Fiber Fizeau interferometer for remote passive sensing. Proc. SPIE 2012, 8370, 83700S-1–83700S-8. [Google Scholar]
- Cocorullo, G.; Della Corte, F.G.; Rendin, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338. [Google Scholar] [CrossRef]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrod, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef] [Green Version]
- Leviton, D.B.; Frey, B.J. Temperature-dependent absolute refractive index measurements of synthetic fused silica. Proc. SPIE 2006, 6273, 62732K. [Google Scholar] [Green Version]
- Cedilnik, G.; Lees, G.; Schmidt, P.E.; Herstrøm, S.; Geisler, T. Pushing the Reach of Fiber Distributed Acoustic Sensing to 125 km Without the Use of Amplification. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicke, K.; Eisermann, R.; Chruscicki, S. Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots. Sensors 2019, 19, 4114. https://doi.org/10.3390/s19194114
Hicke K, Eisermann R, Chruscicki S. Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots. Sensors. 2019; 19(19):4114. https://doi.org/10.3390/s19194114
Chicago/Turabian StyleHicke, Konstantin, René Eisermann, and Sebastian Chruscicki. 2019. "Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots" Sensors 19, no. 19: 4114. https://doi.org/10.3390/s19194114
APA StyleHicke, K., Eisermann, R., & Chruscicki, S. (2019). Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots. Sensors, 19(19), 4114. https://doi.org/10.3390/s19194114