Design and Development of Photonic Biosensors for Swine Viral Diseases Detection
Abstract
:1. Introduction
2. Sensor PIC Design and Fabrication
3. Optical Sensing Results
3.1. Non-functionalized PICs Optical Characterization
3.2. Functionalized PICs Optical Characterization
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parra, L.; Sendra, S.; Lloret, J.; Bosch, I. Development of a conductivity sensor for monitoring groundwater resources to optimize water management in smart city environments. Sensors 2015, 15, 20990–21015. [Google Scholar] [CrossRef]
- Allen, N.; Pinto, P.; Traore, M.; Agah, M. Paper-based capacitive mass sensor. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 562–564. [Google Scholar]
- Sasaki, D.Y.; Singh, S.; Cox, J.D.; Pohl, P.I. Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films. Sens. Actuators 2001, 72, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Bogue, R. Detecting gases with light: A review of optical gas sensor technologies. Sens. Rev. 2015, 35, 133–140. [Google Scholar] [CrossRef]
- Tan, Q.; Tang, L.; Yang, M.; Xu, C.; Zhang, W.; Liu, J.; Xiong, J. Three-gas detection system with IR optical sensor based on NDIR technology. Opt. Lasers Eng. 2015, 74, 103–108. [Google Scholar] [CrossRef]
- Burt, M.C.; Dave, B.C. An optical temperature sensing system based on encapsulation of a dye molecule in organisilica sol-gels. Sens. Actuators 2005, 107, 552–556. [Google Scholar] [CrossRef]
- Bozzeti, M.; Calò, G.; D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Prudenzano, F. Integrated Optical Sensor for Environment Monitoring. In Proceedings of the 2007 ICTON Mediterranean Winter Conference, Sousse, Tunisia, 6–8 December 2007; p. Fr2B.1. [Google Scholar] [CrossRef]
- Klokoc, P.; Lujo, I.; Bosiljevac, M.; Burum, N. Optical sensor system for vibration measuring. In Proceedings of the 2008 50th International Symposium ELMAR, Zadar, Croatia, 10–12 September 2008. [Google Scholar]
- Yotter, R.A.; Lee, L.A.; Wilson, M. Sensor technologies for monitoring metabolic activity in single cells—part I: Optical methods. IEEE Sens. J. 2004, 4, 395–411. [Google Scholar] [CrossRef]
- Amir, R.A.; Massoud, Y.M. Bio-optical sensor for brain activity measurement based on whispering gallery modes. In Proceedings of the Bio-MEMS and Medical Microdevices III, Barcelona, Spain, 8–10 May 2017; Volume 10247, p. 102470A. [Google Scholar] [CrossRef]
- Yang, J.; Guo, L.J. Optical Sensors Based on Active Microcavities. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 143–147. [Google Scholar] [CrossRef]
- Kalyani, V.; Sharma, V. Optical Sensors and Their Use In Medical Field. J. Manage. Eng. Inf. Technol. 2016, 3, 5. [Google Scholar]
- Mathew, F.P.; Alocilja, E.C. Photon based sensing of pathogens in food. IEEE Sens. 2002, 1, 255–260. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, B. Lab-on-a-chip pathogen sensors for food safety. Sensors 2012, 12, 10713–10741. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Swinostics. Available online: http://swinostics.eu/ (accessed on 9 December 2018).
- Montagnese, C.; Barattini, P.; Giusti, A.; Balka, G.; Bruno, U.; Bossis, I.; Gelasakis, A.; Bonasso, M.; Philmis, P.; Dénes, L.; et al. A diagnostic device for in-situ detection of swine viral diseases: The SWINOSTICS project. Sensors 2019, 19, 407. [Google Scholar] [CrossRef]
- ASF Regionalization in the EU. Available online: https://ec.europa.eu/food/sites/food/files/animals/docs/ad_control-measures_asf_pl-lt-regionalisation.pdf (accessed on 9 December 2018).
- Classical Swine Fever (Hog Cholera) 2009. Available online: http://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/CLASSICAL_SWINE_FEVER.pdf (accessed on 9 December 2018).
- Kuhn, J.H.; Lauck, M. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2016, 161, 755–768. [Google Scholar] [CrossRef]
- Cui, J.; Biernacka, K. Circulation of Porcine Parvovirus Types 1 through 6 in Serum Samples Obtained from Six Commercial Polish Pig Farms. Transbound. Emerg. Dis. 2017, 64, 1945–1952. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27882679 (accessed on 9 December 2018). [CrossRef]
- Oliver-Ferrando, S.; Segalés, J. Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. Vet. Res. 2016, 47, 121. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135804/ (accessed on 9 December 2018). [CrossRef]
- Castrucci, M.R.; Donatelli, I. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 1993, 193, 503–506. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8438586 (accessed on 9 December 2018). [CrossRef]
- Wright, J. High Quality Factor Silicon Nitride Ring Resonators for Biological Sensing. Master’s Thesis. Available online: https://www.researchgate.net/publication/44715426_High_quality_factor_silicon_nitride_ring_resonators_for_biological_sensing (accessed on 1 January 2010).
- Goykhman, I.; Desiatov, B.; Levy, U. Ultra-thin Silicon Nitride Microring Resonator for Biophotonic Applications at 970 nm Wavelength. Appl. Phys. Lett. 2010, 97, 081108. Available online: https://aip.scitation.org/doi/10.1063/1.3483766 (accessed on 25 August 2010). [CrossRef]
- Barrios, C.A.; Sánchez, B.; Gylfason, K.B.; Griol, A.; Sohlström, H.; Holgado, M.; Casquel, R. Demonstration of slot-waveguide structures on silicon nitride/silicon dioxide platform. Opt. Express 2007, 15, 6846–6856. [Google Scholar] [CrossRef]
- Kazmierczak, A.; Vivien, L.; Gylfason, K.B.; Sanchez, B.; Griol, A.; Marris-Morini, D.; Cassan, E.; Dortu, F.; Sohlström, H.; Giannone, D.; et al. High quality optical microring resonators in Si3N4/SiO2. In Proceedings of the 14th European Conference on Integrated Optics and Technical Exhibition, Contributed and Invited Papers, ECIO’08 Eindhoven, Eindhoven, The Netherlands, 11–13 June 2008; Available online: https://www.ecio-conference.org/wp-content/uploads/2016/05/2008/2008_ThD2.pdf (accessed on 13 June 2008).
- Carlborg, C.F.; Gylfason, K.B.; Kaźmierczak, A.; Dortu, F.; Bañuls Polo, M.J.; Maquieira Catala, A.; Kresbach, G.M.; Sohlström, H.; Moh, T.; Vivien, L.; et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex assays in lab-on-chip. Lab Chip 2010, 10, 281–290. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Z.; Poon, A.W. Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide. Front. Mater. 2015, 2. Available online: https://www.frontiersin.org/articles/10.3389/fmats.2015.00034/full (accessed on 27 April 2015). [CrossRef]
- Ghasemi, F.; Hosseini, E.; Song, X.; Gottfried, D.S.; Chamanzar, M.; Raeiszadeh, M.; Cummings, R.D.; Eftekhar, A.A.; Adibi, A. Multiplexed detection of lectins using integrated glycan-coated microring resonators. Biosens. Bioelectron. 2015, 80, 682–690. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26826877 (accessed on 15 June 2016). [CrossRef]
- Vivien, L.; Maire, G.; Sattler, G.; Marris-Morini, D.; Cassan, E.; Laval, S.; Kaźmierczak, A.; Giannone, D.; Sanchez, B.; Griol, A.; et al. A high efficiency silicon nitride grating coupler. In Proceedings of the 4th IEEE International Conference on Group IV Photonics, Tokyo, Japan, 19–21 September 2007. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griol, A.; Peransi, S.; Rodrigo, M.; Hurtado, J.; Bellieres, L.; Ivanova, T.; Zurita, D.; Sánchez, C.; Recuero, S.; Hernández, A.; et al. Design and Development of Photonic Biosensors for Swine Viral Diseases Detection. Sensors 2019, 19, 3985. https://doi.org/10.3390/s19183985
Griol A, Peransi S, Rodrigo M, Hurtado J, Bellieres L, Ivanova T, Zurita D, Sánchez C, Recuero S, Hernández A, et al. Design and Development of Photonic Biosensors for Swine Viral Diseases Detection. Sensors. 2019; 19(18):3985. https://doi.org/10.3390/s19183985
Chicago/Turabian StyleGriol, Amadeu, Sergio Peransi, Manuel Rodrigo, Juan Hurtado, Laurent Bellieres, Teodora Ivanova, David Zurita, Carles Sánchez, Sara Recuero, Alejandro Hernández, and et al. 2019. "Design and Development of Photonic Biosensors for Swine Viral Diseases Detection" Sensors 19, no. 18: 3985. https://doi.org/10.3390/s19183985
APA StyleGriol, A., Peransi, S., Rodrigo, M., Hurtado, J., Bellieres, L., Ivanova, T., Zurita, D., Sánchez, C., Recuero, S., Hernández, A., Simón, S., Balka, G., Bossis, I., Capo, A., Camarca, A., D’Auria, S., Varriale, A., & Giusti, A. (2019). Design and Development of Photonic Biosensors for Swine Viral Diseases Detection. Sensors, 19(18), 3985. https://doi.org/10.3390/s19183985