Data Transmission Efficiency in Bluetooth Low Energy Versions
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Hardware
3.2. Measuring System
3.3. Hardware Configuration
3.4. Test Scenarios
3.5. Description of Measurements
3.6. Firmware Implementation
- Central/Peripheral Core module contains the testing logic. It is implemented using a state machine, which initializes the device on boot and awaits for further instructions.
- Test Params module is shared between central and peripheral devices. It is used to load the test parameters for different Bluetooth versions, as well as data building and checking.
- Central/Peripheral BLE module maps the internal handles to universally unique identifiers (UUIDs), as well as forwards relevant Bluetooth events to the core layer. On the central device, it is also responsible for scanning, connecting, and service/characteristic discovery procedures.
- BLE Abstraction provides a layer of abstraction over the different Nordic BLE Stack Components.
- Nordic BLE Stack Components are the host part component abstractions of the BLE Stack, provided by Nordic Semiconductor. These include GATT, GAP, L2CAP, and other BLE layers and modules, as well as a hardware abstraction layer.
- Nordic S140 SoftDevice is a pre-compiled binary image. It is functionally verified according to the wireless protocol specification and reveals only its Application Programming Interface (API).
4. Results and Discussion
4.1. Throughput
4.2. Power End Energy Consumption For Read and Write Transactions
4.3. Power and Energy Consumption for Notify and Write without Response
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BLE | Bluetooth Low Energy |
SoC | System on Chip |
IoT | Internet of Things |
CI | Connection Interval |
CE | Connection Event |
DUT | Device Under Test |
ATT | Attribute Protocol |
GATT | Generic Attribute Profile |
References
- Garcia-Espinosa, E.; Longoria-Gandara, O.; Pegueros-Lepe, I.; Veloz-Guerrero, A. Power Consumption Analysis of Bluetooth Low Energy Commercial Products and Their Implications for IoT Applications. Electronics 2018, 7, 386. [Google Scholar] [CrossRef]
- Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Tosi, J.; Taffoni, F.; Santacatterina, M.; Sannino, R.; Formica, D. Performance Evaluation of Bluetooth Low Energy: A Systematic Review. Sensors 2017, 17, 2898. [Google Scholar] [CrossRef] [PubMed]
- Touati, F.; Erdene-Ochir, O.; Mehmood, W.; Hassan, A.; Mnaouer, A.B.; Gaabab, B.; Rasid, M.F.A.; Khriji, L. An Experimental Performance Evaluation and Compatibility Study of the Bluetooth Low Energy Based Platform for ECG Monitoring in WBANs. Int. J. Distrib. Sen. Netw. 2016, 2015, 1–12. [Google Scholar] [CrossRef]
- Collotta, M.; Pau, G. A Solution Based on Bluetooth Low Energy for Smart Home Energy Management. Energies 2015, 8, 11916–11938. [Google Scholar] [CrossRef] [Green Version]
- Alfian, G.; Syafrudin, M.; Ijaz, M.F.; Syaekhoni, M.A.; Fitriyani, N.L.; Rhee, J. A Personalized Healthcare Monitoring System for Diabetic Patients by Utilizing BLE-Based Sensors and Real-Time Data Processing. Sensors 2018, 18, 2183. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages. Sensors 2018, 18, 1442. [Google Scholar] [CrossRef]
- Perez-Diaz-de Cerio, D.; Hernandez-Solana, A.; Valdovinos, A.; Valenzuela, J.L. A Low-Cost Tracking System for Running Race Applications Based on Bluetooth Low Energy Technology. Sensors 2018, 18, 922. [Google Scholar] [CrossRef]
- Mokhtari, G.; Anvari-Moghaddam, A.; Zhang, Q.; Karunanithi, M. Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology. Sensors 2018, 18, 908. [Google Scholar] [CrossRef]
- Cantón Paterna, V.; Calveras Augé, A.; Paradells Aspas, J.; Pérez Bullones, M.A. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering. Sensors 2017, 17, 2927. [Google Scholar] [CrossRef]
- Martins, V.; Rufino, J.; Silva, L.; Almeida, J.; Miguel Fernandes Silva, B.; Ferreira, J.; Fonseca, J. Towards Personal Virtual Traffic Lights. Information 2019, 10, 32. [Google Scholar] [CrossRef]
- Baronti, P.; Barsocchi, P.; Chessa, S.; Mavilia, F.; Palumbo, F. Indoor Bluetooth Low Energy Dataset for Localization, Tracking, Occupancy, and Social Interaction. Sensors 2018, 18, 4462. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Celli, A.; Ruiu, A.; Saponara, S.; Fanucci, L. A Telemedicine Service System Exploiting BT/BLE Wireless Sensors for Remote Management of Chronic Patients. Technologies 2019, 7, 13. [Google Scholar] [CrossRef]
- Chowdhury, M.E.; Khandakar, A.; Alzoubi, K.; Mansoor, S.M.; Tahir, A.; Reaz, M.B.I.; Al-Emadi, N. Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring. Sensors 2019, 19, 2781. [Google Scholar] [CrossRef] [PubMed]
- Bui, N.T.; Vo, T.H.; Kim, B.G.; Oh, J. Design of a Solar-Powered Portable ECG Device with Optimal Power Consumption and High Accuracy Measurement. Appl. Sci. 2019, 9, 2129. [Google Scholar] [CrossRef]
- Hegde, N.; Sazonov, E. SmartStep: A Fully Integrated, Low-Power Insole Monitor. Electronics 2014, 3, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Zompanti, A.; Santonico, M.; Vollero, L.; Grasso, S.; Sabatini, A.; Mereu, F.; D’Amico, A.; Pennazza, G. A Gas Sensor with BLE connectivity for Wearable Applications. Proceedings 2018, 2, 765. [Google Scholar] [CrossRef]
- Park, D.H.; Oh, S.T.; Lim, J.H. Development of a UV Index Sensor-Based Portable Measurement Device with the EUVB Ratio of Natural Light. Sensors 2019, 19, 754. [Google Scholar] [CrossRef] [PubMed]
- Gil, B.; Anastasova, S.; Yang, G.Z. A Smart Wireless Ear-Worn Device for Cardiovascular and Sweat Parameter Monitoring During Physical Exercise: Design and Performance Results. Sensors 2019, 19, 1616. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahjalal, M.; Chowdhury, M.Z.; Jang, Y.M. Real-Time Healthcare Data Transmission for Remote Patient Monitoring in Patch-Based Hybrid OCC/BLE Networks. Sensors 2019, 19, 1208. [Google Scholar] [CrossRef]
- Sun, C.I.; Huang, J.T.; Weng, S.C.; Chien, M.F. City Marathon Active Timing System Using Bluetooth Low Energy Technology. Electronics 2019, 8, 252. [Google Scholar] [CrossRef]
- Sandeep Kamath, J.L. AN092—Measuring Bluetooth Low Energy Power Consumption. 2015. Available online: http://www.ti.com/lit/an/swra347a/swra347a.pdf (accessed on 15 February 2019 ).
- Martin Woolley. Bluetooth 5. Go Faster. Go Further. Available online: https://www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth_5-FINAL.pdf (accessed on 3 March 2019 ).
- Cho, K.; Park, W.; Hong, M.; Park, G.; Cho, W.; Seo, J.; Han, K. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks. Sensors 2015, 15, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Siekkinen, M.; Hiienkari, M.; Nurminen, J.K.; Nieminen, J. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 232–237. [Google Scholar] [CrossRef]
- Mikhaylov, K.; Plevritakis, N.; Tervonen, J. Performance Analysis and Comparison of Bluetooth Low Energy with IEEE 802.15.4 and SimpliciTI. J. Sens. Actuator Netw. 2013, 2, 589–613. [Google Scholar] [CrossRef] [Green Version]
- Hortelano, D.; Olivares, T.; Ruiz, M.C.; Garrido-Hidalgo, C.; López, V. From Sensor Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolution. Sensors 2017, 17, 372. [Google Scholar] [CrossRef]
- Hernandez-Solana, A.; Perez-Diaz-de Cerio, D.; Valdovinos, A.; Valenzuela, J.L. Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0. Sensors 2017, 17, 1988. [Google Scholar] [CrossRef]
- Ren, K.; Bluetooth SIG. Exploring Bluetooth 5—How Fast Can It Be? 2017. Available online: http://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be (accessed on 7 September 2018).
- Masouros, D.; Bakolas, I.; Tsoutsouras, V.; Siozios, K.; Soudris, D. From edge to cloud: Design and implementation of a healthcare Internet of Things infrastructure. In Proceedings of the 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Nordic Semiconductor. nRF52840 Development Kit. 2017. Available online: https://www.nordicsemi.com/eng/Products/nRF52840-DK (accessed on 27 November 2017).
- Nordic Semiconductor. nRF52840. 2017. Available online: https://www.nordicsemi.com/eng/Products/nRF52840 (accessed on 27 November 2017).
- Nordic Semiconductor. SoftDevices. 2017. Available online: https://www.nordicsemi.com/eng/Products/SoftDevices (accessed on 27 November 2017).
- Nordic Semiconductor. Power Profiler Kit. 2018. Available online: https://www.nordicsemi.com/eng/Products/Power-Profiler-Kit (accessed on 27 August 2018).
- Gašper Kojek. Master Thesis Measurement Results. Available online: https://github.com/ribafish/thesis_gasper_kojek_results (accessed on 3 March 2019).
Range | Resolution |
---|---|
1–70 μA | 0.2 μA |
70 μA–1 mA | 3 μA |
1–70 mA | 50 μA |
Payload | Packets | Time (s) @ CI | ||||
---|---|---|---|---|---|---|
@ 7.5 ms | @ 50 ms | @ 400 ms | @ 1000 ms | @ 4000 ms | ||
20 B | 1 | 0.015 | 0.1 | 0.8 | 2 | 8 |
100 B | 5 | 0.075 | 0.5 | 4 | 10 | 40 |
400 B | 20 | 0.3 | 2 | 16 | 40 | 160 |
1 KB | 50 | 0.75 | 5 | 40 | 100 | 400 |
10 KB | 500 | 7.5 | 50 | 400 | 1000 | 4000 |
100 KB | 5000 | 75 | 500 | 4000 | 10000 | 40000 |
Payload | Packets | Time (s) @ CI | ||||
---|---|---|---|---|---|---|
@ 7.5 ms | @ 50 ms | @ 400 ms | @ 1000 ms | @ 4000 ms | ||
20 B | 1 | 0.015 | 0.1 | 0.8 | 2 | 8 |
100 B | 1 | 0.015 | 0.1 | 0.8 | 2 | 8 |
400 B | 2 | 0.03 | 0.2 | 1.6 | 4 | 16 |
1 KB | 5 | 0.075 | 0.5 | 4 | 10 | 40 |
10 KB | 41 | 0.615 | 4.1 | 32.8 | 82 | 328 |
12.5 KB | 52 | 0.78 | 5.2 | 41.6 | 104 | 416 |
100 KB | 410 | 6.15 | 41 | 328 | 820 | 3280 |
BLE Version | Constant Parameters | CI (ms) | Transaction | Payload |
---|---|---|---|---|
4.0/4.1 | ATT_MTU: 23 TX power: 8 dBm | 7.5, 30, 75, 150, 400, 1000 | Read, Write | 1 KB |
PHY: 1 Mbps Distance: 2 cm | Notify Write w/o rsp | 100 KB | ||
4.2 | ATT_MTU: 247 TX power: 8 dBm | 7.5, 30, 75, 150, 400, 1000 | Read, Write | 12.5 KB |
PHY: 1 Mbps Distance: 2 cm | Notify Write w/o rsp | 100 KB | ||
v5 | ATT_MTU: 247 TX power: 8 dBm | 7.5, 30, 75, 150, 400, 1000 | Read, Write | 12.5 KB |
PHY: 2 Mbps Distance: 2 cm | Notify Write w/o rsp | 100 KB |
Transaction | Measurement Interval | Measurements |
---|---|---|
Read Write | From the first GATT request to the end of CI of the last GATT reply | Time Average current Energy consumption Power consumption |
Notify Write w/o rsp | From the start of first GATT request to the end of last GATT request |
BLE Version | Modulation Rate | Max Throughput |
---|---|---|
4.0/4.1 | 1 Mb/s | 0.305 Mb/s |
4.2 | 1 Mb/s | 0.803 Mb/s |
5 | 2 Mb/s | 1.4 Mb/s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulić, P.; Kojek, G.; Biasizzo, A. Data Transmission Efficiency in Bluetooth Low Energy Versions. Sensors 2019, 19, 3746. https://doi.org/10.3390/s19173746
Bulić P, Kojek G, Biasizzo A. Data Transmission Efficiency in Bluetooth Low Energy Versions. Sensors. 2019; 19(17):3746. https://doi.org/10.3390/s19173746
Chicago/Turabian StyleBulić, Patricio, Gašper Kojek, and Anton Biasizzo. 2019. "Data Transmission Efficiency in Bluetooth Low Energy Versions" Sensors 19, no. 17: 3746. https://doi.org/10.3390/s19173746
APA StyleBulić, P., Kojek, G., & Biasizzo, A. (2019). Data Transmission Efficiency in Bluetooth Low Energy Versions. Sensors, 19(17), 3746. https://doi.org/10.3390/s19173746