Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Application of Smoke to Grapevines
2.2. Experiment 1
2.2.1. Physiological Measurements Using Leaf Porometry
2.2.2. Infrared Thermal Imagery of Canopies
2.2.3. Algorithms Used to Calculate Crop Water Stress Indices (CWSI) and Infrared Index (Ig)
2.2.4. Infrared Thermography Data Extraction
2.2.5. Pattern Recognition of Infrared Thermal Imagery using Machine Learning for Smoke Contamination Prediction
2.3. Experiment 2
2.3.1. Berry Near Infrared (NIR) Spectroscopy Measurements
2.3.2. Winemaking and Chemical Analysis of Berries and Wine
2.3.3. Fitting Modeling of Near-Infrared (NIR) Spectroscopy of Berries Using Machine Learning Modeling to Predict Smoke Taint in Berries and Wine
2.4. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Grapevine Physiological Data Relationships between Porometry and Infrared Thermal Imagery
3.1.2. Pattern Recognition Using Machine Learning Modeling of Physiological and Infrared Thermal Data
3.2. Experiment 2
3.2.1. Berry Morphology and NIR Peak within the 700–1100 nm
3.2.2. Smoke-Related Compounds Found in Berries and Wines
3.2.3. Near-Infrared (NIR) Spectroscopy from Berries and Smoke Taint Compounds Found
3.2.4. Machine Learning Modeling Based on NIR Spectra to Estimate Smoke Taint Compounds in Berries and Wine
4. Discussion
4.1. Physiological Changes within Grapevine Canopies Due to Smoke Contamination
4.2. Pattern Recognition of Smoke Contamination Using Machine Learning Modeling
4.3. Near-Infrared (NIR) Spectroscopy of Berries
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hughes, L.; Alexander, D. Climate Change and the Victoria Bushfire Threat: Update 2017. Climate Council Report. 2017. Available online: http://www.climatecouncil.org.au/uploads/98c26db6af45080a32377f 3ef4800102.pdf (accessed on 10 July 2019).
- Webb, L.; Whetton, P.; Bhend, J.; Darbyshire, R.; Briggs, P.; Barlow, E. Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Webb, L.B. Climate change and winegrape quality in Australia. Clim. Res. 2008, 36, 99–111. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Su, B.; Xue, J.; Xie, C.; Fang, Y.; Song, Y.; Fuentes, S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng. 2016, 9, 119–130. [Google Scholar]
- Ristic, R.; Fudge, A.L.; Pinchbeck, K.A.; De Bei, R.; Fuentes, S.; Hayasaka, Y.; Tyerman, S.D.; Wilkinson, K.L. Impact of grapevine exposure to smoke on vine physiology and the composition and sensory properties of wine. Theor. Exp. Plant Physiol. 2016, 28, 67–83. [Google Scholar] [CrossRef]
- Ristic, R.; Pinchbeck, K.; Fudge, A.; Hayasaka, Y.; Wilkinson, K. Effect of leaf removal and grapevine smoke exposure on colour, chemical composition and sensory properties of Chardonnay wines. Aust. J. Grape Wine Res. 2013, 19, 230–237. [Google Scholar] [CrossRef]
- van der Hulst, L.; Munguia, P.; Culbert, J.A.; Ford, C.M.; Burton, R.A.; Wilkinson, K.L. Accumulation of volatile phenol glycoconjugates in grapes following grapevine exposure to smoke and potential mitigation of smoke taint by foliar application of kaolin. Planta 2019, 249, 941–952. [Google Scholar] [CrossRef]
- Fudge, A.; Ristic, R.; Wollan, D.; Wilkinson, K.L. Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Aust. J. Grape Wine Res. 2011, 17, S41–S48. [Google Scholar] [CrossRef]
- Fudge, A.; Schiettecatte, M.; Ristic, R.; Hayasaka, Y.; Wilkinson, K.L. Amelioration of smoke taint in wine by treatment with commercial fining agents. Aust. J. Grape Wine Res. 2012, 18, 302–307. [Google Scholar] [CrossRef]
- Wilkinson, K.; Ristic, R.; Pinchbeck, K.; Fudge, A.; Singh, D.; Pitt, K.; Downey, M.; Baldock, G.; Hayasaka, Y.; Parker, M. Comparison of methods for the analysis of smoke related phenols and their conjugates in grapes and wine. Aust. J. Grape Wine Res. 2011, 17, S22–S28. [Google Scholar] [CrossRef]
- Dungey, K.A.; Hayasaka, Y.; Wilkinson, K.L. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography–tandem mass spectrometry based stable isotope dilution analysis. Food Chem. 2011, 126, 801–806. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of a HPLC-MS/MS method for the quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2012, 61, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Fudge, A.L.; Wilkinson, K.L.; Ristic, R.; Cozzolino, D. Classification of smoke tainted wines using mid-infrared spectroscopy and chemometrics. J. Agric. Food Chem. 2011, 60, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; De Bei, R.; Pech, J.; Tyerman, S. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 2012, 30, 523–536. [Google Scholar] [CrossRef]
- Jones, H.G.; Stoll, M.; Santos, T.; Sousa, C.D.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.S.; Inoue, Y.; Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Deep Learning Toolbox User’s Guide; The Mathworks Inc.: Herborn, MA, USA, 2018. [Google Scholar]
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef]
- Craparo, A.; Steppe, K.; Van Asten, P.J.; Läderach, P.; Jassogne, L.T.; Grab, S. Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems. Sci. Total Environ. 2017, 609, 755–763. [Google Scholar] [CrossRef]
- Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz, M. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 2017, 187, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, S.; Hernández-Montes, E.; Escalona, J.; Bota, J.; Viejo, C.G.; Poblete-Echeverría, C.; Tongson, E.; Medrano, H. Automated grapevine cultivar classification based on machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared spectroscopy parameters. Comput. Electron. Agric. 2018, 151, 311–318. [Google Scholar] [CrossRef]
- Wang, X.; Bao, Y.; Liu, G.; Li, G.; Lin, L. Study on the best analysis spectral section of NIR to detect alcohol concentration based on SiPLS. Procedia Eng. 2012, 29, 2285–2290. [Google Scholar] [CrossRef]
Variety | Ig | gs (mmol m2 s−1) | Ig | gs (mmol m2 s−1) | ||||
---|---|---|---|---|---|---|---|---|
Control | Smoked | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Chardonnay | 0.32 b | 0.22 | 112.66 c | 60.55 | 0.60 a | 0.34 | 203.02 ab | 145.72 |
Merlot | 1.06 a | 0.29 | 384.93 a | 102.68 | 0.43 ab | 0.28 | 251.00 a | 131.44 |
Sauvignon Blanc | 0.34 b | 0.18 | 130.60 c | 60.12 | 0.32 b | 0.23 | 135.89 b | 46.49 |
Shiraz | 0.52 b | 0.26 | 211.40 b | 88.97 | 0.59 a | 0.10 | 235.35 ab | 148.71 |
Inputs | Algorithm | Neurons | Stage | Samples | Accuracy | Performance |
---|---|---|---|---|---|---|
3 × 3 | Scaled conjugate gradient | 10 | Training | 28 | 100% | 0.03 |
Validation | 10 | 90% | 0.16 | |||
Test | 10 | 80% | 0.44 | |||
Overall | 48 | 94% | - | |||
5 × 5 | Sequential order weight and bias | 10 | Training | 34 | 85% | 0.37 |
Test | 14 | 93% | 0.43 | |||
Overall | 48 | 88% | - | |||
7 × 7 | Sequential order weight and bias | 7 | Training | 34 | 94% | 0.72 |
Test | 14 | 93% | 0.71 | |||
Overall | 48 | 94% | - | |||
10 × 10 | Sequential order weight and bias | 3 | Training | 34 | 97% | 0.45 |
Test | 14 | 93% | 0.47 | |||
Overall | 48 | 96% | - |
P (cm) | D (cm) | Area (cm2) | R (cm) | Brix (°) | NIR982 (nm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | S | C | S | C | S | C | S | C | S | C | S | |
Merlot | 4.7 a | 4.6 a | 1.4 a | 1.3 a | 1.5 a | 1.5 a | 0.3 c | 0.3 bc | 23.9 a | 24.2 ab | 0.4 abc | 0.3 ab |
Shiraz | 4.1 b | 3.9 bc | 1.3 ab | 1.2 b | 1.5 a | 1.2 c | 0.4 ab | 0.3 cd | 24.9 a | 25.4 a | 0.3 cd | 0.4 a |
PinGr | 4.0 bc | 4.2 b | 1.3 bc | 1.3 ab | 1.4 ab | 1.5 a | 0.3 bc | 0.4 a | 18.7 c | 19.8 d | 0.3 abc | 0.4 a |
Char | 4.0 bcd | 3.8 cd | 1.4 a | 1.3 ab | 1.5 a | 1.3 bc | 0.4 a | 0.3 abc | 19.7 cd | 18.6 de | 0.5 a | 0.4 a |
PinNoir | 3.8 cd | 3.8 cd | 1.2 c | 1.3 ab | 1.2 bc | 1.3 abc | 0.3 c | 0.3 ab | 17.2 d | 18.2 e | 0.3 bcd | 0.4 a |
CabSauv | 3.7 cd | 3.6 d | 1.1 d | 1.1 c | 1.1 c | 1.0 d | 0.3 d | 0.3 d | 24.1 a | 23.1 b | 0.4 ab | 0.4 a |
SauvBl | 3.7 d | 3.8 c | 1.3 bc | 1.3 ab | 1.3 b | 1.4 ab | 0.4 ab | 0.4 a | 20.8 b | 21.5 c | 0.2 d | 0.2 b |
Stage | Samples | Observations | R | Slope | Performance (MSE) |
---|---|---|---|---|---|
Training | 78 | 234 | 0.97 | 0.91 | 0.86 |
Test | 33 | 99 | 0.97 | 0.96 | 0.91 |
Overall | 111 | 333 | 0.97 | 0.93 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes, S.; Tongson, E.J.; De Bei, R.; Gonzalez Viejo, C.; Ristic, R.; Tyerman, S.; Wilkinson, K. Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach. Sensors 2019, 19, 3335. https://doi.org/10.3390/s19153335
Fuentes S, Tongson EJ, De Bei R, Gonzalez Viejo C, Ristic R, Tyerman S, Wilkinson K. Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach. Sensors. 2019; 19(15):3335. https://doi.org/10.3390/s19153335
Chicago/Turabian StyleFuentes, Sigfredo, Eden Jane Tongson, Roberta De Bei, Claudia Gonzalez Viejo, Renata Ristic, Stephen Tyerman, and Kerry Wilkinson. 2019. "Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach" Sensors 19, no. 15: 3335. https://doi.org/10.3390/s19153335
APA StyleFuentes, S., Tongson, E. J., De Bei, R., Gonzalez Viejo, C., Ristic, R., Tyerman, S., & Wilkinson, K. (2019). Non-Invasive Tools to Detect Smoke Contamination in Grapevine Canopies, Berries and Wine: A Remote Sensing and Machine Learning Modeling Approach. Sensors, 19(15), 3335. https://doi.org/10.3390/s19153335