Next Article in Journal
A Combined Offline and Online Algorithm for Real-Time and Long-Term Classification of Sheep Behaviour: Novel Approach for Precision Livestock Farming
Previous Article in Journal
Research on the Weld Position Detection Method for Sandwich Structures from Face-Panel Side Based on Backscattered X-ray
Previous Article in Special Issue
Application of an Array of Metal-Oxide Semiconductor Gas Sensors in an Assistant Personal Robot for Early Gas Leak Detection
Article Menu
Issue 14 (July-2) cover image

Export Article

Open AccessArticle

A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption

1
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
2
Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
*
Author to whom correspondence should be addressed.
Sensors 2019, 19(14), 3202; https://doi.org/10.3390/s19143202
Received: 2 July 2019 / Revised: 17 July 2019 / Accepted: 19 July 2019 / Published: 20 July 2019
(This article belongs to the Special Issue Recent Advances in Gas Nanosensors)
  |  
PDF [10542 KB, uploaded 20 July 2019]
  |  

Abstract

A photoacoustic spectroscopy (PAS)-based carbon monoxide (CO) gas sensor with a high-power laser and an enhanced gas absorption was demonstrated. The light source was a distributed feedback (DFB), continuous wave (CW) diode laser with a high output power of ~8 mW to give a strong excitation. The target gas received optical absorption enhanced two times by using a right-angle prism reflecting the laser beam. In order to reduce the noise from the background, wavelength modulation spectroscopy (WMS) and second-harmonic detection techniques were used. The modulation frequency and modulation depth were optimized theoretically and experimentally. Water vapor was added in the PAS sensor system to increase the vibrational–translational (V–T) relaxation rate of the CO molecule, which resulted in an ~8 times signal enhancement compared with the using of a dry CO/N2 gas mixture. The amplitude of the 2f signal had a 1.52-fold improvement compared to the one with only one time absorption. The experimental results showed that such a sensor had an excellent linear response to the optical power and gas concentration. At 1 s integration time, a minimum detection limit (MDL) for CO detection of 9.8 ppm was achieved. The long-term stability of the sensor system was evaluated with an Allan deviation analysis. When the integration time was 1100 s, the MDL improved to be 530 ppb. The detection performance of such a PAS-based CO sensor can be further improved when a laser with a higher output power and increasing optical absorption times is used. View Full-Text
Keywords: photoacoustic spectroscopy (PAS); gas sensor; PA cell; mid-infrared laser photoacoustic spectroscopy (PAS); gas sensor; PA cell; mid-infrared laser
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Qiao, S.; Ma, Y.; He, Y.; Yu, X.; Zhang, Z.; Tittel, F.K. A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption. Sensors 2019, 19, 3202.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top