Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography †
Abstract
:1. Introduction
- Electrical Impedance Tomography (EIT): The distribution of electrical conductivity is determined within the examined object.
- Electrical Capacitance Tomography (ECT): ECT allows one to determine the permittivity distribution in an area filled with dielectrics.
- Electromagnetic Tomography (EMT) or Magnetic Induction Tomography (MIT). These techniques are used to determine the permeability distribution in the examined object.
2. Materials and Methods
2.1. Impedance Spectrum of the Chokeberry and Its Dependence on Humidity—The Method of Examination
2.2. Simulation Analysis of Projected EIT Image Quality
- Area of diameter 30 mm located near the border of the sensor;
- Area of diameter 60 mm located near the border of the sensor;
- Area of diameter 30 mm located in the centre of the sensor;
- Area of diameter 60 mm located in the centre of the sensor.
2.3. The EIT Experimental Setup
3. Results
3.1. Impedance Spectrum of the Chokeberry and Its Dependence on Humidity—The Results
3.2. Results of the Simulation Analysis
3.3. Imaging of the Spatial Distribution of Moisture Content in the Chokeberry—Image Reconstruction Based on Experimental Data
- Case 1: 35.2%;
- Case 2: 54.2%.
4. Discussion
Funding
Conflicts of Interest
References
- Kulling, S.E.; Harshadei, M.R. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef]
- Holder, D.S. Electrical Impedance Tomography. Methods, History and Application; Institute of Physics Publishing: Bristol, UK, 2005. [Google Scholar]
- Porzuczek, J. Applications of the electrical capacitance tomography for research on phenomena occurring in the fluidized bed reactors. Chem. Process Eng. 2014, 35, 397–408. [Google Scholar] [CrossRef]
- Tapp, H.S.; Peyton, A.J.; Kemsley, E.K.; Wilson, R.H. Chemical engineering applications of electrical process tomography. Sens. Actuators B 2003, 92, 17–24. [Google Scholar] [CrossRef]
- Wang, M. Industrial Tomography—Systems and Applications; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Dauti, D.; Tengattini, A.; Dal Pont, S.; Toropows, N.; Briffaut, M.; Weber, B. Analysis of moisture migration in concrete at high temperature through insitu neutron tomography. Cem. Concr. Res. 2018, 111, 41–55. [Google Scholar] [CrossRef]
- Salchak, Y.; Bulavinov, A.; Pinchuk, R.; Lider, A.; Bolotina, I.; Sednev, D. Dry Storage Casks Monitoring by Means of Ultrasonic Tomography. Phys. Procedia 2015, 70, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Rimpilainen, V.; Heikinnen, L.; Vauhkonen, M. Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying with volumetric electrical capacitance tomography. Chem. Eng. Sci. 2012, 75, 220–234. [Google Scholar] [CrossRef]
- Wang, H.G.; Senior, P.R.; Mann, R.; Yang, W.Q. Online measurement and control of solids moisture in fluidised bed dryers. Chem. Eng. Sci. 2009, 64, 2893–2902. [Google Scholar] [CrossRef]
- Zhang, J.L.; Mao, M.X.; Ye, J.M.; Wang, H.G.; Yang, W.Q. Investigation of wetting and drying process in a gas-solid fluidized bed by electrical capacitance tomography and pressure measurement. Powder Technol. 2016, 301, 1148–1158. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy Theory, Experiment and Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Rymarczyk, T.; Kłosowski, G.; Kozłowski, E. A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings. Sensors 2018, 18, 2285. [Google Scholar] [CrossRef]
- André, L.; Lamy, E.; Lutz, P.; Pernier, M.; Lespinard, O.; Pauss, A.; Ribeiro, T. Electrical resistivity tomography to quantify in situ liquid content in a full-scale dry anaerobic digestion reactor. Bioresour. Technol. 2016, 201, 89–96. [Google Scholar] [CrossRef]
- Hoyle, B.S. Spectro-tomography. In Industrial Tomography—Systems and Applications; Wang, M., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 263–284. [Google Scholar]
- Oh, T.I.; Koo, H.; Lee, K.H.; Kim, S.M.; Lee, J.; Kim, S.W.; Seo, J.K.; Woo, E.J. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: Imedance spectroscopy and time-difference imaging. Physiol. Meas. 2008, 29, 295–307. [Google Scholar] [CrossRef]
- Nahvi, M.; Hoyle, B.S. Wideband electrical impedance tomography. Meas. Sci. Technol. 2008, 19, 1–9. [Google Scholar] [CrossRef]
- Hayden, R.I.; Moyse, C.A.; Calder, F.W.; Crawford, D.P.; Fensom, D.S. Electrical Impedance Studies on potato and alfalfa tissue. J. Exp. Bot. 1969, 20, 177–200. [Google Scholar] [CrossRef]
- Toyoda, K.; Kojima, H.; Miyamoto, S.; Takeuchi, R. Measurement and analysis of moisture changes in agricultural products using FFT noise impedance spectroscopy. Dry Technol. 1997, 15, 2025–2035. [Google Scholar] [CrossRef]
- Zhang, M.I.N.; Stout, D.G.; Willson, J.H.M. Plant tissue impedance and cold acclimation: A re-analysis. J. Exp. Bot. 1992, 43, 263–266. [Google Scholar] [CrossRef]
- Bauchot, A.D.; Harker, F.R.; Arnold, W.M. The use of electrical impedance spectroscopy to access the physiological condition of kiwifruit. Postharvest Biol. Technol. 2000, 18, 9–18. [Google Scholar] [CrossRef]
- Calin-Sanchez, A.; Kharaghani, A.; Lech, K.; Figiel, A.; Carbonell-Barrachina, A.; Tsotsas, E. Drying Kinetics and Microstructural and Sensory Properties of Black Chokeberry (Aronia melanocarpa) as Affected by Drying Method. Food Bioprocess Technol. 2015, 8, 63–74. [Google Scholar] [CrossRef]
- Khan, T.A.; Ling, S.H. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms 2019, 12, 88. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Huang, Y.; Yang, Y.; Jia, J. Accelerated Structure-Aware Sparse Bayesian Learning for 3D Electrical Impedance Tomography. IEEE Trans. Ind. Inform. 2019, in press. [Google Scholar] [CrossRef]
- Adler, A.; Lionheart, W. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006, 27, 25–42. [Google Scholar] [CrossRef]
- EIDORS Function Documentation. Available online: http://eidors3d.sourceforge.net/doc/index.shtml (accessed on 15 May 2019).
- Wei, K.; Qiu, C.; Soleimani, M.; Primrose, K. ITS Reconstruction Tool-Suite: An inverse algorithm package for industrial process tomography. Flow Meas. Instrum. 2015, 46, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Netgen Homepage. Available online: https://ngsolve.org/ (accessed on 15 May 2019).
- Kim, S.; Khambampati, A.K. Mathematical concepts for image reconstruction in tomography. In Industrial Tomography—Systems and Applications; Wang, M., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 305–346. [Google Scholar]
- Zanganeh, M. A new high output impedance wideband AC current source with high current swing authority for electrical impedance tomography. Int. J. Comput. Netw. Technol. 2013, 1, 205–213. [Google Scholar] [CrossRef]
- Baidillah, M.R.; Iman, A.S.; Sue, Y.; Takei, M. Electrical Impedance Spectro-Tomography Based on Dielectric Relaxation Model. IEEE Sens. J. 2017, 17, 8251–8262. [Google Scholar] [CrossRef]
- Wang, M. Electrical impedance tomography. In Industrial Tomography—Systems and Applications; Wang, M., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 23–60. [Google Scholar]
- NI 6351 Device Specification. Available online: http://www.ni.com/pdf/manuals/374591d.pdf (accessed on 18 May 2019).
- Sumathi, S.; Surekha, P. LabVIEW Based Advanced Instrumentation Systems; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cui, Z.; Wang, H.; Xu, Y.; Zhang, L.; Yan, Y. An integrated ECT/ERT dual modality sensor. In Proceedings of the International Instrumentation and Measurement Technology Conference, Singapore, 5–7 May 2009. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porzuczek, J. Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography. Sensors 2019, 19, 2807. https://doi.org/10.3390/s19122807
Porzuczek J. Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography. Sensors. 2019; 19(12):2807. https://doi.org/10.3390/s19122807
Chicago/Turabian StylePorzuczek, Jan. 2019. "Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography" Sensors 19, no. 12: 2807. https://doi.org/10.3390/s19122807
APA StylePorzuczek, J. (2019). Assessment of the Spatial Distribution of Moisture Content in Granular Material Using Electrical Impedance Tomography. Sensors, 19(12), 2807. https://doi.org/10.3390/s19122807