Detecting Variable Resistance by Fluorescence Intensity Ratio Technology
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Device and Spectral Measurement
3.2. Detecting Resistance Based on the FIR of 543 nm/524 nm
3.3. Detecting Resistance Based on the FIR of 543 nm/658 nm
3.4. Sensitivity Stability of Sensor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80. [Google Scholar] [CrossRef]
- Chua, L.O.; Desoer, C.A.; Kuh, E.S. Linear and nonlinear circuits. N. Y. McGraw-Hill 1987, 10, 277–286. [Google Scholar]
- Bueno, P.R.; Pianaro, S.A.; Pereira, E.C.; Bulhoes, L.O.S.; Longo, E.; Varela, J.A. Investigation of the electrical properties of SnO 2 varistor system using impedance spectroscopy. J. Appl. Phys. 1998, 84, 3700–3705. [Google Scholar] [CrossRef]
- Greuter, F.; Blatter, G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 1990, 5, 111. [Google Scholar] [CrossRef]
- Vakiv, M.; Shpotyuk, O.; Mrooz, O.; Hadzaman, I. Controlled thermistor effect in the system CuxNi1–x–yCo2yMn2-yO4. J. Eur. Ceram. Soc. 2001, 21, 1783–1785. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Zhou, X.; Yu, Y.; Zhong, J.; Ding, M.; Ji, Z. Dual-phase glass ceramic: Structure, dual-modal luminescence, and temperature sensing behaviors. ACS Appl. Mater. Interfaces 2015, 7, 19484–19493. [Google Scholar] [CrossRef]
- Shi, R.; Ning, L.; Huang, Y.; Tao, Y.; Zheng, L.; Li, Z.; Liang, H. Li4SrCa (SiO4)2: Eu2+: A potential temperature sensor with unique optical thermometric properties. ACS Appl. Mater. Interfaces 2019, 11, 9691–9695. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; Zheng, L.; Zhang, Z.; Cao, W. An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic. Sens. Actuators B Chem. 2012, 173, 250–253. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; Zheng, L.; Wang, P.; Zhang, Z.; Cao, W. Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl. Phys. Express 2012, 5, 072201. [Google Scholar] [CrossRef]
- Suo, H.; Hu, F.; Zhao, X.; Zhang, Z.; Li, T.; Duan, C.; Guo, C. All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window. J. Mater. Chem. C 2017, 5, 1501–1507. [Google Scholar] [CrossRef]
- Saka, M.; Sun, Y.X.; Ahmed, S.R. Heat conduction in a symmetric body subjected to a current flow of symmetric input and output. Int. J. Therm. Sci. 2009, 48, 114–121. [Google Scholar] [CrossRef]
- Lee, G.; Park, Y. Lanthanide-doped upconversion nanocarriers for drug and gene delivery. Nanomaterials 2018, 8, 511. [Google Scholar] [CrossRef]
- Gong, G.; Xie, S.; Song, Y.; Tan, H.; Xu, J.; Zhang, C.; Xu, L. Synthesis of lanthanide-ion-doped NaYF4 RGB up-conversion nanoparticles for anti-counterfeiting Application. J. Nanosci. Nanotechnol. 2018, 18, 8207–8215. [Google Scholar] [CrossRef]
- Kostiv, U.; Lobaz, V.; Kučka, J.; Švec, P.; Sedláček, O.; Hrubý, M.; Horák, D. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 2017, 9, 16680–16688. [Google Scholar] [CrossRef] [PubMed]
- Chander, N.; Khan, A.F.; Komarala, V.K.; Chawla, S.; Dutta, V. Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters. Prog. Photovolt. Prog. Photovolt. Res. Appl. 2016, 24, 692–703. [Google Scholar] [CrossRef]
- Luoshan, M.; Bai, L.; Bu, C.; Liu, X.; Zhu, Y.; Guo, K.; Zhao, X. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4:Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells. J. Power Sour. 2016, 307, 468–473. [Google Scholar] [CrossRef]
- Gangwar, A.K.; Gupta, A.; Kedawat, G.; Kumar, P.; Singh, B.P.; Singh, N.; Gupta, B.K. Highly luminescent dual mode polymeric nanofiber based flexible mat for white security paper and encrypted nanotaggant applications. Chem.-Eur. J. 2018, 24, 9477–9484. [Google Scholar] [CrossRef]
- Huo, L.; Zhou, J.; Wu, R.; Ren, J.; Zhang, S.; Zhang, J.; Xu, S. Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing. Opt. Mater. Express 2016, 6, 1056–1064. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. A Collect. Rev. Nat. J. 2010, 11–19. [Google Scholar] [CrossRef]
- Kataria, M.; Yadav, K.; Haider, G.; Liao, Y.M.; Liou, Y.R.; Cai, S.Y.; Lee, H.M. Transparent, wearable, broadband, and highly sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. ACS. Photonics 2018, 5, 2336–2347. [Google Scholar] [CrossRef]
- Rana, K.P.S.; Kumar, V.; Dagar, A.K.; Chandel, A.; Kataria, A. FPGA implementation of steinhart–hart equation for accurate thermistor linearization. IEEE. Sens. J. 2018, 18, 2260–2267. [Google Scholar] [CrossRef]
- Murmu, A.; Bhattacharyya, B.; Munshi, S. A synergy of voltage-to-frequency converter and continued-fraction algorithm for processing thermocouple signals. Measurement 2018, 116, 514–522. [Google Scholar] [CrossRef]
- Yu, S.H.; Choi, M.S.; Yoo, P.J.; Park, J.H.; Park, J.H.; Cho, J.H.; Lee, J.Y. Temperature sensing behavior of poly (3, 4-ethylenedioxythiophene) thin film. Synthetic. Met. 2013, 185, 52–55. [Google Scholar] [CrossRef]
- Chen, Y.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J. Mater. Chem. A 2018, 6, 7777–7785. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, D.S.; Choi, H.K.; Lee, D.H.; Kim, J.E.; Lee, J.Y.; Choi, S.Y. Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 2010, 96, 213105. [Google Scholar] [CrossRef]
- de Vasconcelos, E.A.; Khan, S.A.; Zhang, W.Y.; Uchida, H.; Katsube, T. Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sensor Actuat. A-phys. 2000, 83, 167–171. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Yu, W.; Wang, K.; Wei, J.; Wu, D.; Ruoff, R.S. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870. [Google Scholar] [CrossRef]
- Gao, S.; Bao, Z.; Wang, L.; Yue, X. Comparison of voltammetry and digital bridge methods for electrical resistance measurements in wood. Comput. Electron. Agric. 2018, 145, 161–168. [Google Scholar] [CrossRef]
- Sasaki, H.; Nishinaka, H.; Shida, K. A modified Wheatstone bridge for high-precision automated resistance measurement. Jpn. J. Appl. Phys. 1987, 26, L1947. [Google Scholar] [CrossRef]
- Wu, S.; Sun, X.; Zhu, J.; Chang, J.; Zhang, S. Increasing electrical conductivity of upconversion materials by in situ binding with graphene. Nanotechnolog 2016, 27, 345703. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Pan, K.; Jiang, B.; Tian, C.; Zhou, W.; Fu, H. NaYF4: Er 3+/Yb 3+-graphene composites: Preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 20381–20386. [Google Scholar] [CrossRef]
- Yin, M.; Wu, L.; Li, Z.; Ren, J.; Qu, X. Facile in situ fabrication of graphene–upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale 2012, 4, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.X.; Zhang, Y.W.; Sun, L.D.; Yan, C.H. Size-and phase-controlled synthesis of monodisperse NaYF4:Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. 2007, 111, 13730–13739. [Google Scholar] [CrossRef]
- Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar] [CrossRef]
- Runowski, M.; Stopikowska, N.; Szeremeta, D.; Goderski, S.; Skwierczyńska, M.; Lis, S. Up-converting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows-β-NaYF4: Yb3+, Er3+@ SiO2 temperature sensor. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef]
- Radunz, S.; Schavkan, A.; Wahl, S.; Würth, C.; Tschiche, H.R.; Krumrey, M.; Resch-Genger, U. Evolution of size and optical properties of upconverting nanoparticles during high-temperature synthesis. J. Phys. Chem. 2018, 122, 28958–28967. [Google Scholar] [CrossRef]
- Kostiv, U.; Patsula, V.; Noculak, A.; Podhorodecki, A.; Větvička, D.; Poučková, P.; Horák, D. Phthalocyanine-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem 2017, 12, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yang, C.; Huang, X. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres. Langmuir 2005, 21, 7598–7607. [Google Scholar] [CrossRef]
- Ghosh, S. Fundamentals of Electrical and Electronics Engineering, 2nd ed.; Asoke, K., Ghosh, Eds.; PHI Learning Private Limited: New Delhi, India, 2007; ISBN 978-81-203-3299-7. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, W.; Wang, X.; Tao, Y.; Yan, X. Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors 2019, 19, 2400. https://doi.org/10.3390/s19102400
Sheng W, Wang X, Tao Y, Yan X. Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors. 2019; 19(10):2400. https://doi.org/10.3390/s19102400
Chicago/Turabian StyleSheng, Wanjun, Xiangfu Wang, Yong Tao, and Xiaohong Yan. 2019. "Detecting Variable Resistance by Fluorescence Intensity Ratio Technology" Sensors 19, no. 10: 2400. https://doi.org/10.3390/s19102400
APA StyleSheng, W., Wang, X., Tao, Y., & Yan, X. (2019). Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors, 19(10), 2400. https://doi.org/10.3390/s19102400