Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery
Abstract
:1. Introduction
2. Theory and Model
2.1. Finite Element Method
2.2. Finite Element Model
2.2.1. The Development Model
2.2.2. Stomata Defect Positing Setting in the Lithium-Ion Battery Model
2.2.3. Finite Element Mesh and Time Step
2.2.4. Boundary Condition and Material Property
3. Specimen and ACUT System
3.1. Specimen
3.2. ACUT System
4. Results and Discussion
4.1. Ultrasonic Propagation Characteristic in the Lithium-Ion Battery
4.2. Air-Coupled Ultrasonic Response and Characterization of the Stomata Defect of the Li-Ion Battery
4.3. Transmission Signal in Actual Detection of the Lithium-Ion Battery
4.4. ACUT C-Scan of the Lithium-Ion Battery Sample
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Finegan, D.P.; Darcy, E.; Keyser, M.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Bailey, J.J.; Malik, R.; Vo, N.T.; Magdysyuk, O.V.; et al. Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits. Energy Environ. Sci. 2017, 10, 1377–1388. [Google Scholar] [CrossRef] [Green Version]
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guan, P.; Liu, C. Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A3163–A3173. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L. Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization. J. Electrochem. Soc. 2017, 164, E3254–E3264. [Google Scholar] [CrossRef]
- Liu, C.; Liu, L. Optimizing battery design for fast charge through a genetic algorithm based multi-objective optimization framework. ECS Trans. 2017, 77, 257–271. [Google Scholar] [CrossRef]
- Guan, P.; Liu, L.; Lin, X. Simulation and experiment on solid electrolyte interphase (SEI) morphology evolution and lithium-ion diffusion. J. Electrochem. Soc. 2015, 162, A1798–A1808. [Google Scholar] [CrossRef]
- Kong, W.; Li, H.; Huang, X.; Chen, L. Gas evolution behaviors for several cathode materials in lithium-ion batteries. J. Power Sources 2005, 142, 285–291. [Google Scholar] [CrossRef]
- Maleki, H.; Howard, J.N. Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Sources 2006, 160, 1395–1402. [Google Scholar] [CrossRef]
- Belharouak, I.; Koenig, G.M.; Tan, T.; Yumoto, H.; Ota, N.; Amine, K. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells. J. Electrochem. Soc. 2012, 159, A1165–A1170. [Google Scholar] [CrossRef]
- Vetter, J.; Holzapfel, M.; Wuersig, A.; Scheifele, W.; Ufheil, J.; Novak, P. In situ study on CO2 evolution at lithium-ion battery cathodes. J. Power Sources 2006, 159, 277–281. [Google Scholar] [CrossRef]
- Liu, L.; Park, J.; Lin, X.; Sastry, A.M.; Lu, W. A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J. Power Sources 2014, 268, 482–490. [Google Scholar] [CrossRef]
- Lin, X.; Park, J.; Liu, L.; Lee, Y.; Sastry, A.M.; Lu, W. A comprehensive capacity fade model and analysis for Li-ion batteries. J. Electrochem. Soc. 2013, 160, A1701–A1710. [Google Scholar] [CrossRef]
- Nelson, J.; Misra, S.; Yang, Y.; Jackson, A.; Liu, Y.; Wang, H.; Dai, H.; Andrews, J.C.; Cui, Y.; Toney, M.F. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 2012, 134, 6337–6343. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, G.V.; Yang, H.; Blizanac, B.; Ross, P.N. A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy. Electrochem. Solid-State Lett. 2005, 8, A441–A445. [Google Scholar] [CrossRef]
- Zhang, H.-L.; Sun, C.-H.; Li, F.; Liu, C.; Tan, J.; Cheng, H.-M. New insight into the interaction between propylene carbonate-based electrolytes and graphite anode material for lithium ion batteries. J. Phys. Chem. C 2007, 111, 4740–4748. [Google Scholar] [CrossRef]
- Huang, S.; Wen, Z.; Zhu, X.; Yang, X. Research on Li4Ti5O12/Cu x O Composite Anode Materials for Lithium-Ion Batteries. J. Electrochem. Soc. 2005, 152, A1301–A1305. [Google Scholar]
- Garcia-Rodriguez, M.; Yañez, Y.; Garcia-Hernandez, M.; Salazar, J.; Turó, A.; Chavez, J. Application of Golay codes to improve the dynamic range in ultrasonic Lamb waves air-coupled systems. NDT E Int. 2010, 43, 677–686. [Google Scholar] [CrossRef]
- Hutchins, D.; Burrascano, P.; Davis, L.; Laureti, S.; Ricci, M. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation. Ultrasonics 2014, 54, 1745–1759. [Google Scholar] [CrossRef] [Green Version]
- Pallav, P.; Gan, T.H.; Hutchins, D.A. Elliptical-Tukey chirp signal for high-resolution, air-coupled ultrasonic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1530–1540. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Z. Application of P4 Polyphase codes pulse compression method to air-coupled ultrasonic testing systems. Ultrasonics 2017, 78, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Z. Air-Coupled Ultrasonic Signal Processing Method for Detection of Lamination Defects in Molded Composites. J. Nondestruct. Eval. 2017, 36, 45. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, Z.; Lu, J.; Ni, X. Simulation of leaky Rayleigh wave at air-solid cylindrical interfaces by finite element method. Ultrasonics 2006, 44, e1169–e1172. [Google Scholar] [CrossRef]
- Jaguemont, J.; Omar, N.; Martel, F.; Bossche, P.V.D.; Van Mierlo, J. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation. J. Power Sources 2017, 367, 24–33. [Google Scholar] [CrossRef]
- Cai, L.; White, R.E. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J. Power Sources. 2011, 196, 5985–5989. [Google Scholar] [CrossRef]
- Chen, S.C.; Wan, C.C.; Wang, Y.Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124. [Google Scholar] [CrossRef]
- Sutherland, L.C.; Daigle, G.A. Atmospheric Sound Propagation; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef]
Material | Acoustic Velocity/m/s | Mesh Size/μm |
---|---|---|
Air | 340 | 100 |
PP_Al-plastic films | 1900 | 30 |
Al_Al-plastic films | 3080 | 30 |
nylon_Al-plastic films | 1800 | 20 |
Electrolyte | 1500 | 20 |
PP_diaphragm | 1900 | 50 |
LiCoO2 coating | 4057 | 50 |
Al_collector | 3080 | 50 |
Graphite coating | 3500 | 50 |
Cu_collector | 3810 | 40 |
Fluid Medium | Density/kg/m3 |
---|---|
Air | 1.29 |
Electrolyte | 1260 |
Solid Medium | Elastic Modulus/GPa | Poisson Ratio | Density/kg/m3 |
---|---|---|---|
LiCoO2 | 191 | 0.24 | 4790 |
Graphite | 191 | 0.25 | 4790 |
Cu | 119 | 0.326 | 8900 |
Al | 71.7 | 0.33 | 2700 |
PP | 0.896 | 0.4103 | 920 |
Nylon | 2 | 0.4 | 1150 |
Defect Electrolyte Layer Location | Sound Pressure/Pa | Attenuation Equivalent/dB |
---|---|---|
No defect | 4.449 | 0 |
First layer | 0.126 | −6.958 |
Second layer | 0.261 | −5.536 |
Third layer | 0.944 | −3.027 |
Fourth layer | 0.541 | −4.114 |
Fifth layer | 0.143 | −6.711 |
Sixth layer | 0.151 | −6.605 |
Defect Electrolyte Layer Location | Amplitude/V | Attenuation Equivalent/dB |
---|---|---|
No defect | 0.722 | 0 |
Near-surface layer | 0.148 | −19.066 |
Middle layer | 0.426 | −6.347 |
Near-bottom layer | 0.139 | −19.821 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhou, Z. Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery. Sensors 2019, 19, 2391. https://doi.org/10.3390/s19102391
Li H, Zhou Z. Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery. Sensors. 2019; 19(10):2391. https://doi.org/10.3390/s19102391
Chicago/Turabian StyleLi, Honggang, and Zhenggan Zhou. 2019. "Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery" Sensors 19, no. 10: 2391. https://doi.org/10.3390/s19102391
APA StyleLi, H., & Zhou, Z. (2019). Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery. Sensors, 19(10), 2391. https://doi.org/10.3390/s19102391