Robust Entangled-Photon Ghost Imaging with Compressive Sensing
Abstract
:1. Introduction
2. Robust Ghost Imaging Based on STLS
3. Numerical Simulation Results
4. Experimental Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morris, P.A.; Aspden, R.S.; Bell, J.E.; Boyd, R.W.; Padgett, M.J. Imaging with a small number of photons. Nat. Commun. 2015, 6, 5913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, P.; Durán, V.; Tajahuerce, E.; Lancis, J. Optical encryption based on computational ghost imaging. Opt. Lett. 2010, 35, 2391–2393. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.H.; Boyd, R.W. The physics of ghost imaging. Quantum Inf. Process. 2012, 11, 949–993. [Google Scholar] [CrossRef] [Green Version]
- Magana-Loaiza, O.S.; Howland, G.A.; Malik, M.; Howell, J.C.; Boyd, R.W. Compressive object tracking using entangled photons. Appl. Phys. Lett. 2013, 102, 231104. [Google Scholar] [CrossRef] [Green Version]
- Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 1995, 74, 3600. [Google Scholar] [CrossRef] [PubMed]
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 1995, 52, R3429. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, M.; Shih, Y.H. Quantum imaging. Laser Phys. Lett. 2010, 2, 567–596. [Google Scholar] [CrossRef]
- Katz, O.; Bromberg, Y.; Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 2009, 95, 739. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Lei, B. Robust Facial Expression Recognition via Compressive Sensing. Sensors 2012, 12, 3747–3761. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zhou, Y.; Truong, T.K. Simultaneous Radio Frequency and Wideband Interference Suppression in SAR Signals via Sparsity Exploitation in Time-Frequency Domain. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5780–5793. [Google Scholar] [CrossRef]
- Yu, W.K.; Li, M.F.; Yao, X.R.; Liu, X.F.; Wu, L.A.; Zhai, G.J. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express 2014, 22, 7133–7144. [Google Scholar] [CrossRef] [PubMed]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Brida, G.; Chekhova, M.V.; Fornaro, G.A.; Genovese, M.; Lopaeva, E.D.; Berchera, I.R. Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light. Phys. Rev. A 2011, 83, 063807. [Google Scholar] [CrossRef] [Green Version]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Han, S. Super-resolution ghost imaging via compressive sampling reconstruction. arXiv, 2009; arXiv:0910.4823. [Google Scholar]
- Genovese, M. Real applications of quantum imaging. J. Opt. 2016, 18, 073002. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Kim, M.W.; Seong, W.; Ye, J.C. Compressed sensing metal artifact removal in dental CT. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009. [Google Scholar]
- Bobin, J.; Starck, J.L.; Ottensamer, R. Compressed Sensing in Astronomy. IEEE J. Sel. Top. Signal Process. 2008, 2, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Czajkowski, K.M.; Pastuszczak, A.; Kotynski, R. Real-time single-pixel video imaging with Fourier domain regularization. arXiv, 2018; arXiv:1804.10008. [Google Scholar]
- Zhang, Z.; Wang, X.; Zheng, G.; Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep. 2017, 7, 12029. [Google Scholar] [CrossRef] [Green Version]
- Higham, C.F.; Murray-Smith, R.; Padgett, M.J.; Edgar, M.P. Deep learning for real-time single-pixel video. Sci. Rep. 2018, 8, 2369. [Google Scholar] [CrossRef]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W.; Howell, J.C. Quantum and classical coincidence imaging. Phys. Rev. Lett. 2004, 92, 033601. [Google Scholar] [CrossRef]
- Deng, C.; Pan, L.; Wang, C.; Gao, X.; Gong, W.; Han, S. Performance analysis of ghost imaging lidar in background light environment. Photonics Res. 2017, 5, 431–435. [Google Scholar] [CrossRef]
- Moreau, P.A.; Toninelli, E.; Morris, P.A.; Aspden, R.S.; Gregory, T.; Spalding, G.; Boyd, R.W.; Padgett, M.J. Resolution limits of quantum ghost imaging. Opt. Express 2018, 26, 7528–7536. [Google Scholar] [CrossRef]
- Wang, H.; Han, S.; Kolobov, M.I. Quantum limits of super-resolution of optical sparse objects via sparsity constraint. Opt. Express 2012, 20, 23235–23252. [Google Scholar] [CrossRef]
- Saleh, B.E.; Abouraddy, A.F.; Sergienko, A.V.; Teich, M.C. Duality between partial coherence and partial entanglement. Phys. Rev. A 2000, 62, 523–530. [Google Scholar] [CrossRef]
- Zerom, P.; Chan, K.W.; Howell, J.C.; Boyd, R.W. Entangled-photon compressive ghost imaging. Phys. Rev. A 2011, 84, 061804. [Google Scholar] [CrossRef]
- Klyshko, D.N. Photons Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Pittman, T.B.; Strekalov, D.V.; Klyshko, D.N.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H. Two-photon geometric optics. Phys. Rev. A 1996, 53, 2804. [Google Scholar] [CrossRef] [PubMed]
- Pilanci, M.; Arikan, O. Recovery of sparse perturbations in Least Squares problems. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011. [Google Scholar]
- Candès, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Herrholz, E.; Teschke, G. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems. Inverse Probl. 2010, 26, 125012. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef]
Methods | OMP | GPSR | Method Proposed in [19] | STLS |
---|---|---|---|---|
Runtime | 7.8582 s | 29.5845 s | 30.1480 s | 102.5624 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gao, W.; Qian, J.; Guo, Q.; Xi, J.; Ritz, C.H. Robust Entangled-Photon Ghost Imaging with Compressive Sensing. Sensors 2019, 19, 192. https://doi.org/10.3390/s19010192
Li J, Gao W, Qian J, Guo Q, Xi J, Ritz CH. Robust Entangled-Photon Ghost Imaging with Compressive Sensing. Sensors. 2019; 19(1):192. https://doi.org/10.3390/s19010192
Chicago/Turabian StyleLi, Jun, Wenyu Gao, Jiachuan Qian, Qinghua Guo, Jiangtao Xi, and Christian H. Ritz. 2019. "Robust Entangled-Photon Ghost Imaging with Compressive Sensing" Sensors 19, no. 1: 192. https://doi.org/10.3390/s19010192
APA StyleLi, J., Gao, W., Qian, J., Guo, Q., Xi, J., & Ritz, C. H. (2019). Robust Entangled-Photon Ghost Imaging with Compressive Sensing. Sensors, 19(1), 192. https://doi.org/10.3390/s19010192