Development of a High-Sensitivity Optical Accelerometer for Low-Frequency Vibration Measurement
Abstract
1. Introduction
2. Structure and Principle
3. Design, Analysis and Fabrication
4. Experimental Setup and Measurement Results
4.1. Resonance Frequency Measurement
4.2. Acceleration Sensitivity Measurement at Low-Frequency
4.3. Frequency Response Range, Acceleration Detection Range and Phase-Frequency Response
4.4. Noise Equivalent Acceleration Measurement.
4.5. Signal Drift of the Optical Accelerometer
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bard, P.Y. Microtremor measurements: A tool for site effect estimation. Eff. Surf. Geol. Seism. Motion 1999, 3, 1251–1279. [Google Scholar]
- Seht, I.V.; Wohlenberg, J. Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Am. 1999, 89, 250–259. [Google Scholar]
- Tian, B.; Liu, H.; Yang, N.; Zhao, Y.; Jiang, Z. Design of a Piezoelectric Accelerometer with High Sensitivity and Low Transverse Effect. Sensors 2016, 16, 1587. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Tan, W.; Kim, E.S.; Loeb, G.E. Highly symmetric tri-axis piezoelectric bimorph accelerometer. In Proceedings of the IEEE International Conference on MICRO Electro Mechanical Systems, Maastricht, The Netherlands, 25–29 January 2004; pp. 197–200. [Google Scholar]
- Hewa-Kasakarage, N.N.; Kim, D.; Kuntzman, M.L.; Hall, N.A. Micromachined Piezoelectric Accelerometers via Epitaxial Silicon Cantilevers and Bulk Silicon Proof Masses. J. Microelectromech. Syst. 2013, 22, 1438–1446. [Google Scholar] [CrossRef]
- Tims, A.C.; Davidson, R.L.; Timme, R.W. High sensitivity piezoelectric accelerometer. Rev. Sci. Instrum. 1975, 46, 554–558. [Google Scholar] [CrossRef]
- Kamentser, B. New Generation of Strain Gauge Accelerometers. SAE Tech. Paper 1994. [Google Scholar] [CrossRef]
- Santana, J.; Hoven, R.V.D.; van Liempd, C.; Colin, M.; Saillen, N.; Zonta, D.; Trapani, D.; Torfs, T.; Van Hoof, C. A 3-axis accelerometer and strain sensor system for building integrity monitoring. Sens. Actuators A Phys. 2012, 188, 141–147. [Google Scholar] [CrossRef]
- Liu, F.; Dai, Y.; Karanja, J.M.; Yang, M. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates. Sensors 2017, 17, 206. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, Y.; Yuan, B.; Yuan, Y.; Dai, Y.; Xu, G. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement. Appl. Opt. 2013, 52, 6782–6787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Qiao, X.G.; Hu, M.L; Feng, Z.; Gao, H.; Yang, Y.; Zhou, R. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement. Chin. Opt. Lett. 2011, 9, 25–28. [Google Scholar]
- Zhang, X.; Rong, Q.; Sun, H.; Yang, S.; Yuan, L.; Hu, M. Low-frequency fiber Bragg grating accelerometer based on a double-semicircle cantilever. Opt. Fiber Technol. 2014, 20, 190–193. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Wang, J.; Yang, H.Y. Fiber Bragg Grating Accelerometer Based on L-Shaped Rigid Beam and Elastic Diaphragm for Low-Frequency Vibration Measurement. Chin. Opt. Lett. 2015, 35, 90–98. [Google Scholar] [CrossRef]
- Li, K.; Chan, T.H.; Yau, M.H.; Nguyen, T.; Thambiratnam, D.P.; Tam, H.Y. Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity. Appl. Opt. 2013, 52, 6401–6410. [Google Scholar] [CrossRef] [PubMed]
- Sabato, A.; Feng, M.Q. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer. Sensors 2014, 14, 16563–16585. [Google Scholar] [CrossRef] [PubMed]
- Sabato, A.; Feng, M.Q.; Fukuda, Y.; Carní, D.L.; Fortino, G. A Novel Wireless Accelerometer Board for Measuring Low-Frequency and Low-Amplitude Structural Vibration. IEEE Sens. J. 2016, 16, 2942–2949. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F.; Park, J.W.; Mechitov, K. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring. Sensors 2018, 18, 262. [Google Scholar] [CrossRef] [PubMed]
- Swartz, R.A.; Lynch, J.P.; Zerbst, S.; Sweetman, B.; Rolfes, R. Structural monitoring of wind turbines using wireless sensor networks. Smart Struct. Syst. 2010, 6, 183–196. [Google Scholar] [CrossRef]
- Cho, S.; Yun, C.-B.; Lynch, J.P.; Zimmerman, A.T.; Spencer, B.F., Jr.; Nagayama, T. Smart wireless sensor technology for structural health monitoring of civil structures. Int. J. Steel Struct. 2008, 8, 267–275. [Google Scholar]
- Whelan, M.J.; Janoyan, K.D. Design of a robust, high-rate wireless sensor network for static and dynamic structural monitoring. J. Intell. Mater. Syst. Struct. 2009, 20, 849–863. [Google Scholar] [CrossRef]
- Meyer, J.; Bischoff, R.; Feltrin, G. Microelectromechanical systems (MEMS). In Encyclopedia of Structural Health Monitoring; Boller, C., Chang, F.K., Fujino, Y., Eds.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Rice, J.A.; Spencer, B.F., Jr. Structural health monitoring sensor development for the Imote2 platform. Proc. SPIE 2008, 6932, 693234–693244. [Google Scholar]
- Kohler, M.D.; Hao, S.; Mishra, N.; Govindan, R.; Nigbor, R. ShakeNet: A Portable Wireless Sensor Network for Instrumenting Large Civil Structures; Technical Report 2015-1134; United States Geological Survey: Los Angeles, CA, USA, 2015; p. 31. [Google Scholar]
- Kohler, M.D.; Heaton, T.H.; Cheng, M.-H. The Community Seismic Network and Quake-Catcher Network: Enabling Structural Health Monitoring through Instrumentation by Community Participants. In Proceedings of the SPIE International Society for Optical Engineering, Bellingham, WA, USA, 19 April 2013; Volume 8692, p. 86923. [Google Scholar]
- Chu, C.L.; Lin, C.H. Development of an optical accelerometer with a DVD pick-up head. Meas. Sci. Technol. 2005, 16, 2498. [Google Scholar] [CrossRef]
- Liu, Y.C.; Fan, K.C.; Chu, C.L.; Werner, C.A.; Jäger, G. Development of an optical accelerometer for low-frequency vibration using the voice coil on a DVD pickup head. Meas. Sci. Technol. 2008, 19, 817–822. [Google Scholar] [CrossRef]
- Chu, C.L.; Lin, C.H.; Fan, K.C. Two-dimensional optical accelerometer based on commercial DVD pick-up head. Meas. Sci. Technol. 2007, 18, 265. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, Y.; Guo, Z.; Zhao, X.; Fan, S. Theory and experiment research for ultra-low frequency maglev vibration sensor. Rev. Sci. Instrum. 2015, 86, 105001. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Zhang, W.; Li, F. All-metal optical fiber accelerometer with low transverse sensitivity for seismic monitoring. IEEE Sens. J. 2013, 13, 4556–4560. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, L.; Li, S.; Wu, X. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas. Sci. Technol. 2011, 22, 15303–15308. [Google Scholar] [CrossRef]
- Li, R.J.; Lei, Y.J.; Zhang, L.S.; Chang, Z.X.; Fan, K.C.; Cheng, Z.Y.; Hu, P.H. High-precision and low-cost vibration generator for low-frequency calibration system. Meas. Sci. Technol. 2018, 29, 034008. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, W.; Feng, Z. Design of ultrastable and high resolution eddy-current displacement sensor system. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; Volume 2015, pp. 2333–2339. [Google Scholar]
- Wang, H.; Feng, Z. Ultrastable and highly sensitive eddy current displacement sensor using self-temperature compensation. Sens. Actuators A Phys. 2013, 203, 362–368. [Google Scholar] [CrossRef]
Principle | Sensitivity (V/g) | Range (g) | BW (Hz) | Noise-Density (μg Hz−1/2) | Study |
---|---|---|---|---|---|
PZT | 9 mV/g | – | – | – | [3] |
X-0.93 mV/g | >0.04 | <100 | – | [4] | |
Y-1.13 mV/g | |||||
Z-0.88 mV/g | |||||
15.6 mV/g | – | 60–1.5 k | 1.7 | [5] | |
2.82 | – | 2–500 | – | [6] | |
Strain | – | 0–5 | <100 | – | [7] |
Variable | ±20,000 με | <100 | 70 | [8] | |
FBG | * | – | 0.7–20 | – | [9] |
0.135 | 0.1–2 | 80–800 | – | [10] | |
0.362 | < 0.5 | 1–10 | – | [11] | |
* | – | 0–25 | – | [12] | |
* | 0.5–1.5 | 20–70 | – | [13] | |
* | 0.1–0.4 | 5–15 | – | [14] | |
MEMS | 1.2 | ±3 | 0.2–1500 | 0.3 | [15,16] |
2 | ±1 | 0–50 | 70 | [18] | |
1 | ±2 | 0–50 | 140 | [19] | |
0.66 | ±2 | 0–100 | 30 | [20] | |
0.66/0.22 | ±6/±2 | 0–100 | 30 | [21] | |
0.66 | ±2 | 0–50 | 50 | [22] | |
1.2 | ±3 | 0–1500 | 0.3 | [23,24] | |
Optical | 12.28 | <0.017 ★ | 3–24 | 20 | [25] |
24.36 | <0.0023 ★ | 3–6 | – | [26] | |
22.9 | <0.08 ★ | 0.5–50 | 30 | [27] | |
Others | – | – | 0.2–0.4 | – | [28] |
* | – | 5–400 | 0.09 | [29] | |
– | – | 20–140 | 0.048 | [30] |
Thickness (mm) | Leaf Spring Shape | Resonant Frequency (Hz) | Statics Deformation (μm) | Elastic Coefficient (mN/μm) | ||
---|---|---|---|---|---|---|
1st Order | 2nd Order | 3rd Order | ||||
0.1 | a | 70.33 | 2156.2 | 2158.9 | 50.527 | 1.21 |
b | 20.82 | 24.01 | 24.11 | 577.53 | 0.11 | |
c | 48 | 1245.6 | 1246.5 | 81.61 | 0.56 | |
d | 76.02 | 2411.9 | 2414.2 | 43.03 | 1.42 | |
0.15 | a | 121.87 | 135.85 | 136.77 | 16.96 | 3.61 |
b | 31.26 | 35.66 | 35.73 | 256.54 | 0.24 | |
c | 89.35 | 108.73 | 109.57 | 24.92 | 1.96 | |
d | 135.64 | 3299.2 | 3306.5 | 13.53 | 4.52 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.-J.; Lei, Y.-J.; Chang, Z.-X.; Zhang, L.-S.; Fan, K.-C. Development of a High-Sensitivity Optical Accelerometer for Low-Frequency Vibration Measurement. Sensors 2018, 18, 2910. https://doi.org/10.3390/s18092910
Li R-J, Lei Y-J, Chang Z-X, Zhang L-S, Fan K-C. Development of a High-Sensitivity Optical Accelerometer for Low-Frequency Vibration Measurement. Sensors. 2018; 18(9):2910. https://doi.org/10.3390/s18092910
Chicago/Turabian StyleLi, Rui-Jun, Ying-Jun Lei, Zhen-Xin Chang, Lian-Sheng Zhang, and Kuang-Chao Fan. 2018. "Development of a High-Sensitivity Optical Accelerometer for Low-Frequency Vibration Measurement" Sensors 18, no. 9: 2910. https://doi.org/10.3390/s18092910
APA StyleLi, R.-J., Lei, Y.-J., Chang, Z.-X., Zhang, L.-S., & Fan, K.-C. (2018). Development of a High-Sensitivity Optical Accelerometer for Low-Frequency Vibration Measurement. Sensors, 18(9), 2910. https://doi.org/10.3390/s18092910