Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of AuNPs and the Modification by DNA Strands
2.3. Colorimetric Detection of CH3Hg+
3. Results and Discussion
3.1. Characterization of AuNPs and DNA-AuNPs Complex
3.2. Colorimetric Detection of CH3Hg+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lin, Y.-H.; Tseng, W.-L. Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82, 9194–9200. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.B.; Qu, W.S.; Chen, W.W.; Zhang, W.; Wang, Z.; Jiang, X.Y. Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature. Anal. Chem. 2010, 82, 9606–9610. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.J.; Marsh, D.O.; Davidson, P.W.; Cox, C.; Shamlaye, C.F.; Tanner, M.; Choi, A.; Cernichiari, E.; Choisy, O.; Clarkson, T.W. Main neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from a maternal fish diet: Outcome at six months. Neurotoxicology 1995, 16, 653–664. [Google Scholar] [PubMed]
- Hight, S.C.; Cheng, J. Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): Method development and validation. Anal. Chim. Acta 2006, 567, 160–172. [Google Scholar] [CrossRef]
- Vallant, B.; Kadnar, R.; Goessler, W. Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J. Anal. At. Spectrom. 2007, 22, 322–325. [Google Scholar] [CrossRef]
- Gao, Y.; Galan, S.D.; Brauwere, A.D.; Baeyens, W.; Leermakers, M. Mercury speciation in hair by headspace injection–gas chromatography–atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta 2010, 82, 1919–1923. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem. 2017, 238, 888–902. [Google Scholar] [CrossRef]
- Mao, S.; Chang, J.; Zhou, G.; Chen, J. Nanomaterial-enabled Rapid Detection of Water Contaminants. Small 2015, 11, 5336–5359. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.; Bhardwaj, S.K.; Bhardwaj, N.; Paul, A.K.; Kumar, P.; Kim, K.H.; Deep, A. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 2016, 34, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Chen, L.X. Colorimetric Detection of Mercury Species Based on Functionalized Gold Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 15897–15904. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Uzun, L.; Denizli, A. Lysine-Promoted Colorimetric Response of Gold Nanoparticles: A Simple Assay for Ultrasensitive Mercury(II) Detection. Anal. Chem. 2014, 86, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.H.; Han, C.S. Eco-friendly colorimetric detection of mercury(II) ions using label-free anisotropic nanogolds in ascorbic acid solution. Sens. Actuators B Chem. 2014, 195, 239–245. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Ma, C.; Du, J.; Wang, M.; Wang, K. Quencher-Free Fluorescence Method for the Detection of Mercury(II) Based on Polymerase-Aided Photoinduced Electron Transfer Strategy. Sensors 2016, 16, 1945. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Xiao, M.; Fu, Q.; Yu, S.; Shen, H.; Bian, H.; Tang, Y. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor. Sensors 2016, 16, 1871. [Google Scholar] [CrossRef] [PubMed]
- Kamaruddin, N.; Bakar, A.A.; Mobarak, N.; Zan, M.S.; Arsad, N. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions. Sensors 2017, 17, 2277. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Zhu, X.Y.; Jiao, H.J.; Dong, Y.M.; Li, Z.J. Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens. Bioelectron. 2012, 31, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, M.; Cao, T.; Sun, Y.; Li, C.; Liu, Q.; Yang, T.; Yao, L.; Feng, W.; Li, F. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 2013, 135, 9869–9876. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Chen, L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 15897–15904. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Li, Y.; Yan, X.; Xiao, J.; Ma, C.; Zheng, J.; Liu, S.; Yang, R. Ultrasensitive and highly selective detection of bioaccumulation of methyl-mercury in fish samples via Ag0/Hg0 amalgamation. Anal. Chem. 2015, 87, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Pandeeswar, M.; Senanayak, S.P.; Govindaraju, T. Nanoarchitectonics of Small Molecule and DNA for Ultrasensitive Detection of Mercury. ACS Appl. Mater. Interfaces 2016, 8, 30362–30371. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, X.; Cheng, X.; Yang, W.; Wu, Y.; Fu, F. Specifically and Visually Detect Methyl-Mercury and Ethyl-Mercury in Fish Sample Based on DNA-Templated Alloy Ag-Au Nanoparticles. Anal. Chem. 2018, 90, 5489–5495. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.J.; Li, Y.F.; Liu, Y.; Zheng, J.J.; Tang, J.; Huang, C.Z. Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem. Commun. 2011, 47, 11939–11941. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Chen, Z.P.; Zhang, Z.Y.; Qu, C.L.; Chen, L.X.; Shen, D.Z. Fluorescent sensing of mercury(II) based on formation of catalytic gold nanoparticles. Analyst 2013, 138, 4280–4283. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-F.; Pan, N.; Xie, Z.-J.; Wu, L.-L. Highly sensitive and selective colorimetric detection of Hg2+ based on the separation of Hg2+ and formation of catalytic DNA–gold nanoparticles. Anal. Methods 2016, 8, 1021–1025. [Google Scholar] [CrossRef]
- Wu, L.-L.; Wang, L.-Y.; Xie, Z.-J.; Xue, F.; Peng, C.-F. Colorimetric detection of Hg2+ based on inhibiting the peroxidase-like activity of DNA–Ag/Pt nanoclusters. RSC Adv. 2016, 6, 75384–75389. [Google Scholar] [CrossRef]
- Wang, C.I.; Huang, C.C.; Lin, Y.W.; Chen, W.T.; Chang, H.T. Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Anal. Chim. Acta 2012, 745, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Kenduzler, E.; Ates, M.; Arslan, Z.; McHenry, M.; Tchounwou, P.B. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Talanta 2012, 93, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.d.C.P.; de Andrade, L.S.N.; Luna, A.S.; de Campos, R.C. Sequential quantification of methyl mercury in biological materials by selective reduction in the presence of mercury(II), using two gas–liquid separators. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 2103–2112. [Google Scholar] [CrossRef]
- Yin, J.; Cao, H.; Lu, Y. Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J. Mater. Chem. 2012, 22, 527–534. [Google Scholar] [CrossRef]
- Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection. Anal. Chem. 2014, 86, 4536–4543. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Banerjee, M.; Khandare, D.G.; Gawas, R.U.; Mascarenhas, S.C.; Ganguly, A.; Gupta, R.; Joshi, H. Aggregation-Induced Emission-Based Chemodosimeter Approach for Selective Sensing and Imaging of Hg(II) and Methylmercury Species. Anal. Chem. 2017, 89, 12698–12704. [Google Scholar] [CrossRef] [PubMed]






| Type | Sequence |
|---|---|
| HT5 | 5′-SH-CTTTGTTAAAAATTCTTTG-3′ |
| HT7 | 5′-SH-GTTCTTTGTTAAAAATTCTTTGTTC-3′ |
| HT9 | 5′-SH-TTGTTCTTTGTTAAAAATTCTTTGTTCTT-3′ |
| HR | 5′-SH-CTGCTGCTGCAAAAAGCAGCAGCAG-3′ |
| Method | Probe | Limit of Detection | Linear Range | Selectivity to Hg2+ | Sample | Ref. |
|---|---|---|---|---|---|---|
| Fluorescent | Lys VI-AuNCs | CH3Hg+: 3 pM Hg2+: 4 nM | CH3Hg+: 15–500 nM; Hg2+: 10−5000 pM | seawater | [1] | |
| Upconversion fluorescence | hCy7-UCNPs | 0.8 ppb | 0–7 μM; | Not clear | cells | [17] |
| Colorimetric | Diethyldithiocarbamate-AuNPs | CH3Hg+: 15 nM Hg2+: 10 nM | CH3Hg+: 0.03–0.8 μM; Hg2+: 0.01–0.1 μM | EDTA can mask Hg2+ | drinking water | [18] |
| Fluorescent sensing by in-situ synthesis | carbon dots | 5.9 nM | 23–278 nM | tolerate with 250-fold Hg2+ | River/sea water a | [30] |
| Fluorescent sensing by in-situ synthesis | Silver nanocluster | 0.4 nM | 2.0 nM–12.0 μM | tolerate with 50-fold Hg2+ | Fish sample | [19] |
| chiro-optical | adenine -small organic semiconductor and oligothymidine | CH3Hg+/Hg2+: 0.1 nM | 1–1000 nM | - | water | [20] |
| AIE-based fluorescence | tetraphenylethylene–monoboronic acid | CH3Hg+/Hg2+: 0.12 ppm | 0.6–30 ppm | - | Fish muscle | [31] |
| Colorimetric | DNA-Templated Ag–Au nanoparticles synthesis | 0.5 μM | 0–200 μM | tolerate with 50-fold Hg2+ | Fish muscle | [21] |
| Colorimetric | DNA-AuNPs | 5 nM | 20–500 nM | tolerate with 1-fold Hg2+ | Lake water | This work |
| Water Sample | Added (nM) | Mean Found (nM) | Mean Recovery (%) |
|---|---|---|---|
| 1 | 20 | 19.1 ± 0.9 | 95.5% |
| 2 | 50 | 46.8 ± 2.3 | 93.6% |
| 3 | 100 | 102.1 ± 3.7 | 102.1% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.-J.; Bao, X.-Y.; Peng, C.-F. Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles. Sensors 2018, 18, 2679. https://doi.org/10.3390/s18082679
Xie Z-J, Bao X-Y, Peng C-F. Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles. Sensors. 2018; 18(8):2679. https://doi.org/10.3390/s18082679
Chicago/Turabian StyleXie, Zheng-Jun, Xian-Yu Bao, and Chi-Fang Peng. 2018. "Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles" Sensors 18, no. 8: 2679. https://doi.org/10.3390/s18082679
APA StyleXie, Z.-J., Bao, X.-Y., & Peng, C.-F. (2018). Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles. Sensors, 18(8), 2679. https://doi.org/10.3390/s18082679

