Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach
Abstract
:1. Introduction
- A review of the wideband sensing techniques
- The mathematical model of the Bayesian compressive sensing-based method
- An experimental setup using software defined radio units
- An evaluation of the proposed approach using several metrics
- A Comparison between the proposed approach and three Nyquist-based sensing techniques
2. Methodology
2.1. Mathematical Model
2.2. Experimental Setup
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaabouch, N.; Hu, W.C. Handbook of Research on Software-Defined and Cognitive Radio Technologies for Dynamic Spectrum Management; IGI global: Hershey, PA, USA, 2014. [Google Scholar]
- Pandit, S.; Singh, G. Spectrum Sensing in Cognitive Radio Networks: Potential Challenges and Future Perspective. In Springer Spectrum Sharing in Cognitive Radio Networks; Springer: Cham, Switzerland, 2017; pp. 35–75. [Google Scholar]
- Tropp, J.A.; Laska, J.N.; Duarte, M.F. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals. IEEE Trans. Inf. Theory 2010, 56, 520–544. [Google Scholar] [CrossRef] [Green Version]
- Arjoune, Y.; El Mrabet, Z.; El Ghazi, H.; Tamtaoui, A. Spectrum sensing: Enhanced energy detection technique based on noise measurement. In Proceedings of the IEEE Computing and Communication Workshop and conference, Las Vegas, NV, USA, 8–10 January 2018; pp. 828–834. [Google Scholar]
- Reyes, H.; Subramaniam, S.; Kaabouch, N. A spectrum sensing technique based on autocorrelation and Euclidean distance and its comparison with energy detection for cognitive radio networks. J. Comput. Electr. Eng. 2016, 52, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Salahdine, F.; El Ghazi, H.; Kaabouch, N. Matched filter detection with dynamic threshold for cognitive radio networks. In Proceedings of the IEEE Wireless Networks and Mobile Communications Conference, Marrakesh, Morocco, 20–23 October 2015; pp. 1–7. [Google Scholar]
- Sun, H.; Nallanathan, A.; Wang, C.X.; Chen, Y. Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wirel. Commun. 2013, 20, 74–81. [Google Scholar]
- Chiang, R.I.C.; Rowe, G.B.; Sowerby, K.W. A Quantitative Analysis of Spectral Occupancy Measurements for Cognitive Radio. In Proceedings of the IEEE Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 3016–3020. [Google Scholar]
- Islam, M.H.; Koh, C.L.; Oh, S.W. Spectrum Survey in Singapore: Occupancy Measurements and Analyses. In Proceedings of the IEEE Cognitive Radio Oriented Wireless Networks and Communications Conference, Singapore, 15–17 May 2008; pp. 1–7. [Google Scholar]
- Benitez, L.; Umbert, M.; Casadevall, F. Evaluation of Spectrum Occupancy in Spain for Cognitive Radio Applications. In Proceedings of the IEEE Vehicular Technology Conference, Anchorage, AK, USA, 20–23 September 2009; pp. 1–5. [Google Scholar]
- Huang, L.; Deng, Q.; Qiao, X. SDR implementation of cognitive radio: Sensing and disjoint spectrum access. In Proceedings of the Communications and Networking Conference in China, Beijing, China, 24–26 September 2009; pp. 1–5. [Google Scholar]
- Tian, Z.; Giannakis, G.B. A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios. In Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece, 8–10 June 2006; pp. 1–5. [Google Scholar]
- Zhao, Y.; Wu, Y.; Wang, J.; Zhong, X.; Mei, L. Wavelet transform for spectrum sensing in Cognitive Radio networks. In Proceedings of the International Conference on Audio, Language, and Image Processing, Shanghai, China, 7–9 July 2014; pp. 565–569. [Google Scholar]
- Kumar, A.; Saha, S.; Bhattacharya, R. Improved wavelet transform based edge detection for wide band spectrum sensing in Cognitive Radio. In Proceedings of the USNC-URSI Radio Science Meeting, Boulder, CO, USA, 6–9 January 2016; pp. 21–22. [Google Scholar]
- Quan, Y.Z.; Shuguang Cui, Y.C.; Sayed, A.H.; Poor, H.V.; Zeng, Y.; Kua, K. Optimal Multiband Joint Detection for Spectrum Sensing in Cognitive Radio Networks. IEEE Trans. Signal Process. 2009, 57, 1128–1140. [Google Scholar] [CrossRef] [Green Version]
- Farhang-Boroujeny, B. Filter Bank Spectrum Sensing for Cognitive Radios. IEEE Trans. Signal Process. 2008, 56, 1801–1811. [Google Scholar] [CrossRef]
- Raghu, I.; Chowdary, S.S.; Elias, E. Efficient spectrum sensing for Cognitive Radio using Cosine Modulated Filter Banks. In Proceedings of the IEEE Region 10 Conference, Singapore, 22–25 November 2016; pp. 2086–2089. [Google Scholar]
- Sharma, K.; Sharma, A. Design of Cosine Modulated Filter Banks exploiting spline function for spectrum sensing in Cognitive Radio applications. In Proceedings of the International Conference on Power Electronics, Intelligent Control, and Energy Systems, Delhi, India, 4–6 July 2016; pp. 1–5. [Google Scholar]
- Manesh, M.R.; Kaabouch, N.; Apu, M.S. Performance Evaluation of Spectrum Sensing Techniques for Cognitive Radio Systems. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA, 20–22 October 2016; pp. 1–7. [Google Scholar]
- Hector, R.; Subramaniam, S.; Kaabouch, N.; Hu, W.C. A Bayesian inference method for estimating the channel occupancy. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 20–22 October 2016; pp. 1–6. [Google Scholar]
- Manesh, M.R.; Subramaniam, S.; Reyes, H. Spectrum Occupancy Monitoring Using a Probabilistic Model. J. Comput. Netw. 2017, 124, 87–96. [Google Scholar] [CrossRef]
- Salahdine, F.; Kaabouch, N.; El Ghazi, H. Bayesian Compressive Sensing with Circulant Matrix for Spectrum Sensing in CRN. In Proceedings of the IEEE Ubiquitous Computing, Electronics and Mobile Communication Conference, New York, NY, USA, 20–22 October 2016; pp. 1–7. [Google Scholar]
- Yin, W.; Wen, Z.; Li, S. Dynamic compressive spectrum sensing for cognitive radio networks. In Proceedings of the IEEE Information Sciences and Systems Conference, Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [Google Scholar]
- Qaisar, S.; Bilal, R.M.; Iqbal, W. Compressive sensing: From theory to applications, a survey. J. Commun. Netw. 2013, 15, 443–456. [Google Scholar] [CrossRef]
- Salahdine, F.; Kaabouch, N.; El Ghazi, H. A survey on compressive sensing techniques for cognitive radio networks. J. Phys. Commun. 2016, 20, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, T.A.; Abdelsadek, M.Y.; Farrag, M. Compressed Measurements Based Spectrum Sensing for Wideband Cognitive Radio Systems. Int. J. Antennas Propag. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Qin, Z.; Gao, Y.; Plumbley, M.D.; Parini, C.G. Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes. J. IEEE Trans. Signal Process. 2016, 64, 3106–3117. [Google Scholar] [CrossRef]
- Tian, J.; Giannakis, B. Compressed Sensing for Wideband Cognitive Radios. In Proceedings of the Acoustics, Speech and Signal Processing Conference, Honolulu, HI, USA, 15–20 April 2007; pp. 1357–1360. [Google Scholar]
- Sabahi, M.F.; Masoumzadeh, M.; Forouzan, A.R. Frequency-domain wideband compressive spectrum sensing. IET Commun. 2016, 10, 1655–1664. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G. Compressed wideband spectrum sensing based on discrete cosine transform. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yin, W. Compressive Spectrum Sensing for Cognitive Radio. In Proceedings of the IEEE Information Sciences and Systems Conference, Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [Google Scholar]
- Polo, Y.L.; Wang, Y.; Pandharipande, A.; Leus, G. Compressive wide-band spectrum sensing. In Proceedings of the IEEE Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 2337–2340. [Google Scholar]
- Wang, Y.; Tian, Z.; Feng, C. Sparsity Order Estimation and its Application in Compressive Spectrum Sensing for Cognitive Radios. IEEE Trans. Wirel. Commun. 2012, 11, 2116–2125. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chiu, W.Y.; Nallanathan, A. Adaptive Compressive Spectrum Sensing for Wideband Cognitive Radios. IEEE Commun. Lett. 2012, 16, 1812–1815. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Gao, Y.; Parini, C.G. Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate. IEEE Trans. Wirel. Commun. 2016, 15, 1174–1185. [Google Scholar] [CrossRef]
- Mishali, M.; Eldar, Y. Blind multiband signal reconstruction: Compressed sensing for analog signals. IEEE Trans. Signal Process. 2009, 57, 993–1009. [Google Scholar] [CrossRef]
- Mishali, M.; Eldar, Y. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Signal Process. 2010, 4, 375–391. [Google Scholar] [CrossRef]
- Arjoune, Y.; Kaabouch, N.; El Ghazi, H.; Tamtaoui, A. Compressive sensing: Performance comparison of sparse recovery algorithms. In Proceedings of the IEEE Computing and Communication Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–7. [Google Scholar]
- Arjoune, Y.; Kaabouch, N.; El Ghazi, H.; Tamtaoui, A. A performance comparison of measurement matrices in compressive sensing. Int. J. Commun. Syst. 2018, 31, e3576. [Google Scholar]
- Hamid, M.; Bjorsell, N.; Ben Slimane, S. Sample covariance matrix eigenvalues based blind SNR estimation. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Montevideo, Uruguay, 12–15 May 2014; pp. 718–722. [Google Scholar]
- Manesh, M.R.; Quadri, A.; Subramaniam, S.; Kaabouch, N. An optimized SNR estimation technique using particle swarm optimization algorithm. In Proceedings of the IEEE Computing and Communication Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–6. [Google Scholar]
Start Frequency MHz | Stop Frequency MHz | Number of Channels | Spacing MHz | |
---|---|---|---|---|
GSM 850 | 869 | 894 | 126 | 0.2 |
GSM 1900 | 1930 | 1990 | 126 | 0.2 |
Wi-Fi 2.4 | 2402 | 2501 | 30 | 5 |
Wi-Fi 5.8 | 5725 | 5880 | 30 | 5 |
Recovery Techniques | Recovery Error | Recovery Time | Complexity |
---|---|---|---|
Convex and relaxation techniques | minor | Long | complex |
Greedy techniques | High | Short | Not complex |
Bayesian recovery techniques | minor | Short | Not complex |
Parameters | Values |
---|---|
Number of samples | |
Modulation | |
Transmission power | |
FFT size | |
SNR range in dB | |
Number of trials |
Evaluation Metrics | Nyquist Sensing (a) | Sensing with CS (b) | Sensing with CS (c) | Sensing with CS (d) | Sensing with CS (e) |
---|---|---|---|---|---|
Probability of detection and | |||||
Processing time in (ms) | |||||
for | No recovery |
Wideband Sensing Technique | Advantages | Disadvantage |
---|---|---|
Wavelet-based detection [12,13,14] |
|
|
Multi-band joint-based detection [15] |
|
|
Filter bank-joint detection [16,17,18] |
|
|
Compressive sensing-based detection |
|
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjoune, Y.; Kaabouch, N. Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors 2018, 18, 1839. https://doi.org/10.3390/s18061839
Arjoune Y, Kaabouch N. Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors. 2018; 18(6):1839. https://doi.org/10.3390/s18061839
Chicago/Turabian StyleArjoune, Youness, and Naima Kaabouch. 2018. "Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach" Sensors 18, no. 6: 1839. https://doi.org/10.3390/s18061839
APA StyleArjoune, Y., & Kaabouch, N. (2018). Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors, 18(6), 1839. https://doi.org/10.3390/s18061839