A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gorczynska, I.; Migacz, J.V.; Zawadzki, R.J.; Capps, A.G.; Werner, J.S. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. Biomed. Opt. Express 2016, 7, 911–942. [Google Scholar] [CrossRef] [PubMed]
- Tearney, G.J.; Jang, I.K.; Bouma, B.E. Optical coherence tomography for imaging the vulnerable plaque. J. Biomed. Opt. 2006, 11, 002. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, Y.; Hong, Y.; Makita, S.; Yamanari, M.; Akiba, M.; Miura, M. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 2007, 15, 6121–6139. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.C.; Puliafito, A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Springer: New York, NY, USA, 2008. [Google Scholar]
- Rollins, A.M.; Izatt, J.A. Optimal interferometer designs for optical coherence tomography. Opt. Lett. 1999, 24, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
- Fathipour, V.; Schmoll, T.; Bonakdar, A.; Wheaton, S.; Mohseni, H. Demonstration of shot-noise-limited swept source OCT without balanced detection. Sci. Rep. UK 2017, 7, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F.; Cense, B.; Park, B.H.; Pierce, M.C.; Tearney, G.J.; Bouma, B.E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 2003, 28, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Azimi, E.; Liu, B.; Brezinski, M.E. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography. J. Biomed. Opt. 2010, 15, 016005. [Google Scholar] [CrossRef] [PubMed]
- Dhalla, A.-H.; Izatt, J.A. Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line. Biomed. Opt. Express 2011, 2, 1218–1232. [Google Scholar] [CrossRef] [PubMed]
- Wijesundara, K.C.; Iftimia, N.V.; Oldenburg, A.L. Design of a Swept-Source, Anatomical OCT System for Pediatric Bronchoscopy. Proc. Soc. Photo Opt. Instrum. Eng. 2013, 8571, 235–240. [Google Scholar]
- Zeidel, M.L.; Xie, T.Q.; Pan, Y.T. Detection of tumorigenesis in urinary bladder with optical coherencetomography: Optical characterization of morphological changes. Opt. Express 2002, 10, 1431–1443. [Google Scholar]
- Feldchtein, F.I.; Bush, J.; Gelikonov, G.; Gelikonov, V.; Piyevsky, S. Cost effective, all-fiber autocorrelator based 1300 nm OCT system. Proc. SPIE 2005, 5690, 349–355. [Google Scholar]
- Ford, H.D.; Beddows, R.; Casaubieilh, P.; Tatum, R.P. Comparitive signal-to-noise analysi of fibreoptic based optical coherence tomography systems. J. Mod. Opt. 2005, 52, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Zhou, A.; Yuan, L. Temperature insensitive one-dimensional bending vector sensor based on eccentric-core fiber and air cavity Fabry-Perot interferometer. J. Opt. UK 2017, 19, 045705. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, J.; Xu, X.; Zhao, Y.; Zhou, A. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement. Sensors 2018, 18, 1168. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Q.; Tong, X.; Deng, C.; Zhang, C.; Wang, P.; Zheng, Z.; Liu, F. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography. Sensors 2018, 18, 1540. https://doi.org/10.3390/s18051540
Xiong Q, Tong X, Deng C, Zhang C, Wang P, Zheng Z, Liu F. A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography. Sensors. 2018; 18(5):1540. https://doi.org/10.3390/s18051540
Chicago/Turabian StyleXiong, Qiao, Xinglin Tong, Chengwei Deng, Cui Zhang, Pengfei Wang, Zhiyuan Zheng, and Fang Liu. 2018. "A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography" Sensors 18, no. 5: 1540. https://doi.org/10.3390/s18051540
APA StyleXiong, Q., Tong, X., Deng, C., Zhang, C., Wang, P., Zheng, Z., & Liu, F. (2018). A Novel Mach-Zehnder Interferometer Using Eccentric-Core Fiber Design for Optical Coherence Tomography. Sensors, 18(5), 1540. https://doi.org/10.3390/s18051540