Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Spectral Acquisition
2.3. Data Analysis
2.3.1. Data Preprocessing
2.3.2. Chemometrics Methods
2.3.3. Performance Evaluation
2.4. Software Tools
3. Results and Discussion
3.1. Spectral Analysis
3.2. Stability Analysis
3.3. Sensitivity Analysis
3.3.1. Univariate Analysis Models of SP and Collinear DP Signals
3.3.2. Multivariate Analysis Models of SP and Collinear DP Signals
3.3.3. Comparison of Univariate and Multivariate Analysis Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, Y.; Xiao, S.; Nie, P.; Dong, T.; Qu, F.; Lin, L. Research on the optimum water content of detecting soil nitrogen using near infrared. Sensors 2017, 17, 2045. [Google Scholar] [CrossRef] [PubMed]
- Morra, M.J.; Hall, M.H.; Freeborn, L.L. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [Google Scholar] [CrossRef]
- Basiri, S.; Moinfar, S.; Hosseini, M.R.M. Determination of As(III) using developed dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2011, 91, 1453–1465. [Google Scholar] [CrossRef]
- Momen, A.A.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique. Talanta 2007, 71, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Liu, Y.; Yang, Y.; Hu, Z. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci. 2016, 1, 5–27. [Google Scholar] [CrossRef]
- Yu, K.Q.; Zhao, Y.R.; Liu, F.; He, Y. Laser-induced breakdown spectroscopy coupled with multivariate chemometrics for variety discrimination of soil. Sci. Rep. 2016, 6, 27574–27584. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; He, Y.; Ye, L.; Shen, T.; Liu, F.; Kong, W.; Liu, X.; Zhao, Y. Moisture influence reducing method for heavy metals detection in plant materials using laser-induced breakdown spectroscopy: A case study for chromium content detection in rice leaves. Anal. Chem. 2017, 89, 7593–7600. [Google Scholar] [CrossRef] [PubMed]
- Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Appl. Phys. A 2008, 93, 917–922. [Google Scholar] [CrossRef]
- Babiy, M.Y.; Golik, S.S.; Ilyin, A.A.; Biryukova, Y.S.; Agapova, T.M.; Lisitsa, V.V. Investigation of spectral lines broadening in femtosecond laser plasma generated on the surface of the barium water solutions. Phys. Procedia 2017, 86, 92–97. [Google Scholar] [CrossRef]
- Martin, M.Z.; Wullschleger, S.D.; Garten, C.T.; Palumbo, A.V. Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. Appl. Opt. 2003, 42, 2072–2077. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.D.; Cremers, D.A.; Ebinger, M.H.; Bluhm, B.K. Determination of nitrogen in sand using laser-induced breakdown spectroscopy. Appl. Spectrosc. 2004, 58, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.M.; Zhao, C.J.; Zheng, W.G.; Zhao, X.D.; Jiao, L.Z. Spectral Characterization of Nitrogen in Farmland Soil by Laser-Induced Breakdown Spectroscopy. Spectrosc. Lett. 2013, 46, 421–426. [Google Scholar] [CrossRef]
- Yang, N.F.; Eash, N.S.; Lee, J.; Martin, M.Z.; Zhang, Y.S.; Walker, F.R.; Yang, J.E. Multivariate analysis of laser-induced breakdown spectroscopy spectra of soil samples. Soil Sci. 2010, 175, 447–452. [Google Scholar] [CrossRef]
- Popov, A.M.; Kozhnov, M.O.; Labutin, T.A.; Zaytsev, S.M.; Drozdova, A.N.; Mityurev, N.A. Rapid determination of zinc in soils by laser-induced breakdown spectroscopy. Tech. Phys. Lett. 2013, 39, 81–83. [Google Scholar] [CrossRef]
- Awasthi, S.; Kumar, R.; Devanathan, A.; Acharya, R.; Rai, A.K. Multivariate methods for analysis of environmental reference materials using laser-induced breakdown spectroscopy. Anal. Chem. Res. 2017, 12, 10–16. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Zhou, F.; Song, K.; Zhang, C.; Ye, L.; He, Y. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. TrAC Trends Anal. Chem. 2016, 85, 260–272. [Google Scholar] [CrossRef]
- Sobral, H.; Sanginés, R.; Trujillo-Vázquez, A. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 2012, 78, 62–66. [Google Scholar] [CrossRef]
- Qi, L.; Sun, L.; Xin, Y. Application of stand-off double-pulse laser-induced break down spectroscopy in elemental analysis of magnesium alloy. Plasma Sci. Technol. 2015, 17, 676–681. [Google Scholar] [CrossRef]
- Kim, G.; Kwak, J.; Choi, J.; Park, K. Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). J. Agric. Food Chem. 2012, 60, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Nicolodelli, G.; Senesi, G.S.; Romano, R.A.; de Oliveira Perazzoli, I.L.; Milori, D.M.B.P. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils. Spectrochim. Acta Part B Atomic Spectrosc. 2015, 111, 23–29. [Google Scholar] [CrossRef]
- Liu, F.; Ye, L.; Peng, J.; Song, K.; Shen, T.; Zhang, C.; He, Y. Fast detection of copper content in rice by laser-induced breakdown spectroscopy with uni- and multivariate analysis. Sensors 2018, 18, 705. [Google Scholar] [CrossRef] [PubMed]
- Afgan, M.S.; Hou, Z.; Wang, Z. Quantitative analysis of common elements in steel using a handheld μ-libs instrument. J. Anal. Atomic Spectrom. 2017, 32, 1905–1915. [Google Scholar] [CrossRef]
- Pedarnig, J.D.; Haslinger, M.J.; Bodea, M.A.; Huber, N.; Wolfmeir, H.; Heitz, J. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 2014, 101, 183–190. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Lenth, C.; Salb, C.; Ko, E.J.; Kim, K.-W.; Park, K. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 2009, 64, 1105–1110. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, Y.; Zhang, C.; Cheng, P.; He, Y. Discrimination of transgenic maize kernel using NIR hyperspectral imaging and multivariate data analysis. Sensors 2017, 17, 1894. [Google Scholar] [CrossRef] [PubMed]
- Vidya, H.A.; Tyagi, B.; Krishnan, V.; Mallikarjunappa, K. Removal of interferences from partial discharge pulses using wavelet transform. Telkomnika 2011, 9, 107–114. [Google Scholar] [CrossRef]
- Gottlieb, C.; Millar, S.; Günther, T.; Wilsch, G. Revealing hidden spectral information of chlorine and sulfur in data of a mobile LIBS system using chemometrics. Spectrochim. Acta Part B Atomic Spectrosc. 2017, 132, 43–49. [Google Scholar] [CrossRef]
- Nie, P.; Dong, T.; He, Y.; Xiao, S. Research on the effects of drying temperature on nitrogen detection of different soil types by near infrared sensors. Sensors 2018, 18, 391. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Sun, D. Partial least squares regression (PLSR) applied to NIR and HSI spectral data modeling to predict chemical properties of fish muscle. Food Eng. Rev. 2016, 9, 36–49. [Google Scholar] [CrossRef]
- Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of soil nitrogen using near infrared sensors based on soil pretreatment and algorithms. Sensors 2017, 17, 1102. [Google Scholar] [CrossRef] [PubMed]
- Mehrkanoon, S.; Suykens, J.A.K. LS-SVM approximate solution to linear time varying descriptor systems. Automatica 2012, 48, 2502–2511. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, H. A least-squares support vector machine (LS-SVM) based on fractal analysis and cielab parameters for the detection of browning degree on mango (Mangifera indica L.). Comput. Electron. Agric. 2012, 83, 47–51. [Google Scholar] [CrossRef]
- Liu, F.; He, Y. Use of visible and near infrared spectroscopy and least squares-support vector machine to determine soluble solids content and Ph of cola beverage. J. Agric. Food Chem. 2007, 55, 8883–8888. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; He, Y.; Feng, S.; Sun, D. Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. J. Food Eng. 2008, 84, 124–131. [Google Scholar] [CrossRef]
- Liu, F.; Nie, P.; Huang, M. Nondestructive determination of nutritional information in oilseed rape leaves using visible/near infrared spectroscopy and multivariate calibrations. Sci. China Inf. Sci. 2011, 54, 598–608. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Chauchard, F.; Cogdill, R.; Roussel, S.; Roger, J.M.; Bellon-Maurel, V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004, 71, 141–150. [Google Scholar] [CrossRef]
- Haider, Z.; Munajat, Y.B.; Kamarulzaman, R.; Shahami, N. Comparison of single pulse and double simultaneous pulse laser induced breakdown spectroscopy. Anal. Lett. 2014, 48, 308–317. [Google Scholar] [CrossRef]
- Hegazy, H.; Abdel-Wahab, E.A.; Abdel-Rahim, F.M.; Allam, S.H.; Nossair, A.M.A. Laser-induced breakdown spectroscopy: Technique, new features, and detection limits of trace elements in al base alloy. Appl. Phys. B 2013, 115, 173–183. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. IUPAC-Consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 2014, 86, 7858–7866. [Google Scholar] [CrossRef] [PubMed]
- Galiová, M.; Kaiser, J.; Novotný, K.; Hartl, M.; Kizek, R.; Babula, P. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum L. leaves. Microsc. Res. Tech. 2011, 74, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Beldjilali, S.; Borivent, D.; Mercadier, L.; Mothe, E.; Clair, G.; Hermann, J. Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 2010, 74, 727–733. [Google Scholar] [CrossRef]
- Porizka, P.; Prochazka, D.; Pilat, Z.; Krajcarova, L.; Kaiser, J.; Malina, R.; Novotny, J.; Zemanek, P.; Jezek, J.; Sery, M.; et al. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochim. Acta Part B Atomic Spectrosc. 2012, 74, 169–176. [Google Scholar] [CrossRef]
- Juvé, V.; Portelli, R.; Boueri, M.; Baudelet, M.; Yu, J. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc. 2008, 63, 1047–1053. [Google Scholar] [CrossRef]
- Senesi, G.S.; Dell’Aglio, M.; Giacomo, A.D.; Pascale, O.D.; Chami, Z.A.; Miano, T.; Zaccone, C. Elemental composition analysis of plants and composts used for soil remediation by laser-induced breakdown spectroscopy. Clean-Soil Air Water 2014, 42, 791–798. [Google Scholar] [CrossRef]
- Khumaeni, A.; Lie, Z.S.; Niki, H.; Kurniawan, K.H.; Tjoeng, E.; Lee, Y.I.; Kurihara, K.; Deguchi, Y.; Kagawa, K. Direct analysis of powder samples using transversely excited atmospheric CO2 laser-induced gas plasma at 1 atm. Anal. Bioanal. Chem. 2011, 400, 3279–3287. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Chatterji, S.; Rai, N.K.; Rai, A.K.; Bicanic, D.; Watal, G. The Glycemic Elemental Profile of Trichosanthes dioica: A LIBS-Based Study. Food Biophys. 2010, 5, 17–23. [Google Scholar] [CrossRef]
- Peng, J.; Song, K.; Zhu, H.; Kong, W.; Liu, F.; Shen, T.; He, Y. Fast detection of tobacco mosaic virus infected tobacco using laser-induced breakdown spectroscopy. Sci. Rep. 2017, 7, 44551–44560. [Google Scholar] [CrossRef] [PubMed]
Number | K | Ca | Mg | Fe | Mn | Na |
---|---|---|---|---|---|---|
GBW07447 | 17.51 ± 0.17 | 48.28 ± 0.71 | 15.48 ± 0.42 | 8.58 ± 0.35 | 0.53 ± 0.01 | 22.57 ± 0.67 |
GBW07452 | 21.91 ± 0.25 | 29.89 ± 0.57 | 15.66 ± 0.36 | 11.70 ± 0.56 | 0.88 ± 0.02 | 14.13 ± 0.30 |
GBW07453 | 20.58 ± 0.33 | 2.41 ± 0.14 | 6.96 ± 0.24 | 6.24 ± 0.56 | 0.71 ± 0.01 | 6.14 ± 0.22 |
GBW07454 | 18.92 ± 0.17 | 50.98 ± 0.71 | 11.94 ± 0.30 | 10.14 ± 0.49 | 0.63 ± 0.02 | 12.88 ± 0.22 |
GBW07455 | 18.09 ± 0.33 | 32.59 ± 0.50 | 11.22 ± 0.36 | 8.40 ± 0.56 | 0.56 ± 0.02 | 14.06 ± 0.22 |
GBW07456 | 19.67 ± 0.33 | 34.86 ± 0.50 | 16.50 ± 0.48 | 13.26 ± 0.63 | 0.96 ± 0.04 | 9.03 ± 0.22 |
Elements | Emission Lines (nm) | Reference |
---|---|---|
K | I 404.72, I 518.36, I 766.49, I 769.90 | [41,42,43] |
Ca | I 445.48, I 616.21, I 643.91 | [44] |
Mg | I 383.23, I 383.81, I 516.73, I 517.26, I 518.36 | [44,45] |
Fe | I 404.58, I 406.36, I 428.2, I 428.8 | [42,45,46] |
Mn | I 279.81, I 403.07, I 403.31, I 403.45 | [44,45] |
Na | I 818.3, I 819.47 | [44,47] |
Signal | Parameter | K | Ca | Mg | Fe | Mn | Na |
---|---|---|---|---|---|---|---|
Single pulse | σbackground | 8.127 | 9.487 | 5.883 | 10.629 | 20.196 | 7.229 |
b | 507.929 | 123.201 | 161.914 | 236.183 | 1211.787 | 202.709 | |
LOD (ppm) | 48 | 231 | 109 | 135 | 50 | 107 | |
Double pulse | σbackground | 7.608 | 13.820 | 6.637 | 11.169 | 31.679 | 7.381 |
b | 736.217 | 236.922 | 390.422 | 265.929 | 2375.932 | 393.389 | |
LOD (ppm) | 31 | 175 | 51 | 126 | 40 | 54 |
Signal | Parameter | K | Ca | Mg | Fe | Mn | Na |
---|---|---|---|---|---|---|---|
Single pulse | a | 25.746 | 10.405 | 12.491 | 8.962 | 24.680 | 14.329 |
LOD (ppm) | 39 | 96 | 80 | 112 | 41 | 70 | |
Double pulse | a | 32.823 | 12.524 | 13.398 | 14.342 | 26.672 | 20.130 |
LOD (ppm) | 30 | 80 | 75 | 70 | 37 | 50 |
Data | Model | Parameter | R2C | RMSEC | R2P | RMSEP | LOD (ppm) |
---|---|---|---|---|---|---|---|
Single-pulse of K | Univariate | - | 0.864 | 1.205 | 0.833 | 1.913 | 48 |
PLS-DA | 7 | 0.927 | 0.300 | 0.902 | 0.343 | 39 | |
LS-SVM | (10,10) | 0.941 | 0.271 | 0.936 | 0.277 | - | |
Double-pulse of K | Univariate | - | 0.955 | 0.709 | 0.948 | 0.945 | 31 |
PLS-DA | 5 | 0.965 | 0.218 | 0.961 | 0.231 | 30 | |
LS-SVM | (10,10) | 0.969 | 0.199 | 0.966 | 0.256 | - | |
Single-pulse of Ca | Univariate | - | 0.822 | 2.599 | 0.817 | 3.558 | 231 |
PLS-DA | 10 | 0.953 | 2.559 | 0.951 | 2.706 | 96 | |
LS-SVM | (8,10) | 0.997 | 0.608 | 0.961 | 2.506 | - | |
Double-pulse of Ca | Univariate | - | 0.898 | 1.853 | 0.876 | 2.675 | 175 |
PLS-DA | 8 | 0.989 | 1.236 | 0.979 | 2.055 | 80 | |
LS-SVM | (9,9) | 0.999 | 0.226 | 0.998 | 0.578 | - | |
Single-pulse of Mg | Univariate | - | 0.894 | 0.709 | 0.872 | 1.171 | 109 |
PLS-DA | 5 | 0.912 | 0.734 | 0.880 | 0.864 | 80 | |
LS-SVM | (3,7) | 0.990 | 0.247 | 0.931 | 0.652 | - | |
Double-pulse of Mg | Univariate | - | 0.901 | 0.559 | 0.888 | 1.063 | 51 |
PLS-DA | 6 | 0.954 | 0.535 | 0.943 | 0.589 | 75 | |
LS-SVM | (10,10) | 0.997 | 0.120 | 0.984 | 0.311 | - | |
Single-pulse of Fe | Univariate | - | 0.839 | 0.911 | 0.811 | 1.031 | 135 |
PLS-DA | 9 | 0.931 | 0.449 | 0.915 | 0.504 | 112 | |
LS-SVM | (5,4) | 0.944 | 0.410 | 0.932 | 0.449 | - | |
Double-pulse of Fe | Univariate | - | 0.864 | 0.645 | 0.851 | 0.672 | 126 |
PLS-DA | 8 | 0.979 | 0.251 | 0.969 | 0.407 | 70 | |
LS-SVM | (7,9) | 0.989 | 0.179 | 0.970 | 0.463 | - | |
Single-pulse of Mn | Univariate | - | 0.871 | 0.044 | 0.866 | 0.063 | 50 |
PLS-DA | 7 | 0.904 | 0.037 | 0.872 | 0.043 | 41 | |
LS-SVM | (10,10) | 0.958 | 0.024 | 0.873 | 0.042 | - | |
Double-pulse of Mn | Univariate | - | 0.899 | 0.039 | 0.892 | 0.056 | 40 |
PLS-DA | 11 | 0.981 | 0.016 | 0.966 | 0.025 | 37 | |
LS-SVM | (10,10) | 0.992 | 0.011 | 0.979 | 0.029 | - | |
Single-pulse of Na | Univariate | - | 0.901 | 0.723 | 0.897 | 1.021 | 107 |
PLS-DA | 9 | 0.949 | 0.862 | 0.936 | 0.952 | 70 | |
LS-SVM | (7,7) | 0.995 | 0.157 | 0.967 | 0.562 | - | |
Double-pulse of Na | Univariate | - | 0.917 | 0.713 | 0.899 | 0.933 | 54 |
PLS-DA | 7 | 0.985 | 0.457 | 0.980 | 0.624 | 50 | |
LS-SVM | (8,10) | 0.999 | 0.076 | 0.997 | 0.162 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Liu, X.; Lv, Y.; Liu, F.; Peng, J.; Shen, T.; Zhao, Y.; Tang, Y.; Luo, S. Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors 2018, 18, 1526. https://doi.org/10.3390/s18051526
He Y, Liu X, Lv Y, Liu F, Peng J, Shen T, Zhao Y, Tang Y, Luo S. Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors. 2018; 18(5):1526. https://doi.org/10.3390/s18051526
Chicago/Turabian StyleHe, Yong, Xiaodan Liu, Yangyang Lv, Fei Liu, Jiyu Peng, Tingting Shen, Yun Zhao, Yu Tang, and Shaoming Luo. 2018. "Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy" Sensors 18, no. 5: 1526. https://doi.org/10.3390/s18051526
APA StyleHe, Y., Liu, X., Lv, Y., Liu, F., Peng, J., Shen, T., Zhao, Y., Tang, Y., & Luo, S. (2018). Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors, 18(5), 1526. https://doi.org/10.3390/s18051526