PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks
Abstract
1. Introduction
2. Related Work
3. System Model
4. Problem Formulation
5. Proposed PS-CARA Scheme for mPC
6. Simulation Results and Discussions
6.1. Random-Walk Mobility Model for mPC
6.2. Effect of Varying SINR Target Control and Path Loss Compensation Factors () on User Transmit Power
6.3. Users Receive Interference under the PS-CARA Scheme
6.4. Users Throughput for PS-CARA Scheme
6.5. Call Blocking Probability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
 - Tehrani, M.N.; Uysal, M.; Yanikomeroglu, H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Commun. Mag. 2014, 52, 86–92. [Google Scholar] [CrossRef]
 - Ge, X.; Tu, S.; Mao, G.; Wang, C.X.; Han, T. 5G ultra-dense cellular networks. IEEE Wirel. Commun. 2016, 23, 72–79. [Google Scholar] [CrossRef]
 - Kim, W.; Kaleem, Z.; Chang, K. Power headroom report-based uplink power control in 3GPP LTE-A HetNet. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 233. [Google Scholar] [CrossRef]
 - Monserrat, J.F.; Mange, G.; Braun, V.; Tullberg, H.; Zimmermann, G.; Bulakci, Ö. METIS research advances towards the 5G mobile and wireless system definition. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 1–53. [Google Scholar] [CrossRef]
 - Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
 - Wang, H.; Ding, G.; Gao, F.; Chen, J.; Wang, J.; Wang, L. Power control in UAV-supported ultra dense networks: Communications, caching, and energy transfer. arXiv, 2017; arXiv:1712.05004. [Google Scholar]
 - Kaleem, Z.; Rehmani, M.H. Amateur Drone Monitoring: State-of-the-Art Architectures, Key Enabling Technologies, and Future Research Directions. arXiv, 2017; arXiv:1710.02382. [Google Scholar]
 - Lee, C.H.; Lee, S.H.; Go, K.C.; Oh, S.M.; Shin, J.S.; Kim, J.H. Mobile Small Cells for Further Enhanced 5G Heterogeneous Networks. ETRI J. 2015, 37, 856–866. [Google Scholar] [CrossRef]
 - Sui, Y.; Vihriala, J.; Papadogiannis, A.; Sternad, M.; Yang, W.; Svensson, T. Moving cells: A promising solution to boost performance for vehicular users. IEEE Commun. Mag. 2013, 51, 62–68. [Google Scholar] [CrossRef]
 - Gu, F.; Niu, J.; He, Z. A Research on Mobile Cloud Computing and Future Trends. Trans. Indust. Netw. Intell. Syst. 2016, 16. [Google Scholar] [CrossRef][Green Version]
 - Mhiri, F.; Sethom, K.; Bouallegue, R. A survey on interference management techniques in femtocell self-organizing networks. J Netw. Comput. Appl. 2013, 36, 58–65. [Google Scholar] [CrossRef]
 - Kaleem, Z.; Li, Y.; Chang, K. Architecture and features for 5G mobile personal cell. In Proceedings of the International Conference on ICT Convergence (ICTC), Jeju Island, Korea, 28–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 164–166. [Google Scholar]
 - Kaleem, Z.; Chang, K.H. Public Safety Priority-Based User Association for Load Balancing and Interference Reduction in PS-LTE Systems. IEEE Access 2016, 4, 9775–9785. [Google Scholar] [CrossRef]
 - Kaleem, Z.; Hui, B.; Chang, K. QoS priority-based dynamic frequency band allocation algorithm for load balancing and interference avoidance in 3GPP LTE HetNet. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 1–18. [Google Scholar] [CrossRef]
 - Ahmad, I.; Kaleem, Z.; Chang, K. Uplink power control for interference mitigation based on users priority in two-tier femtocell network. In Proceedings of the International Conference on ICT Convergence (ICTC), Jeju Island, Korea, 14–16 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 474–476. [Google Scholar]
 - Ahmad, A.; Khan, M.T.R.; Kaleem, Z. Uplink optimal power allocation for heterogeneous multiuser SIMO SC-FDMA networks. Electron. Lett. 2016, 52, 1990–1992. [Google Scholar] [CrossRef]
 - Kim, W.; Kaleem, Z.; Chang, K. Interference-Aware Uplink Power Control in 3GPP LTE-A HetNet. Wirel. Pers. Commun. 2017, 1–15. [Google Scholar] [CrossRef]
 - Kaleem, Z.; Ahmad, A.; Rehmani, M.H. Neighbors’ interference situation-aware power control scheme for dense 5G mobile communication system. Telecommun. Syst. 2017, 1–8. [Google Scholar] [CrossRef]
 - Das, S.K.; Sen, S.K.; Jayaram, R. A dynamic load balancing strategy for channel assignment using selective borrowing in cellular mobile environment. Wirel. Net. 1997, 3, 333–347. [Google Scholar] [CrossRef]
 - Zhang, H.; Liu, H.; Cheng, J.; Leung, V.C. Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Trans. Commun. 2017, arXiv:1710.02942. [Google Scholar]
 - Sui, Y.; Guvenc, I.; Svensson, T. Interference management for moving networks in ultra-dense urban scenarios. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 1–32. [Google Scholar] [CrossRef]
 - Sui, Y.; Ren, Z.; Sun, W.; Svensson, T.; Fertl, P. Performance study of fixed and moving relays for vehicular users with multi-cell handover under co-channel interference. In Proceedings of the International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, 2–6 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 514–520. [Google Scholar]
 - Ahmad, I.; Chen, W.; Chang, K. LTE-Railway User Priority-Based Cooperative Resource Allocation Schemes for Coexisting Public Safety and Railway Networks. IEEE Access 2017, 5, 7985–8000. [Google Scholar] [CrossRef]
 - Chen, W.; Ahmad, I.; Chang, K. Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 1–34. [Google Scholar] [CrossRef]
 - Alam, M.; Yang, D.; Huq, K.; Saghezchi, F.; Mumtaz, S.; Rodriguez, J. Towards 5G: Context Aware Resource Allocation for Energy Saving. J. Sign. Process. Syst. 2016, 83, 279–291. [Google Scholar] [CrossRef]
 - Ghasemi-Falavarjani, S.; Nematbakhsh, M.; Ghahfarokhi, B.S. Context-aware multi-objective resource allocation in mobile cloud. Comput. Elect. Engg. 2015, 44, 218–240. [Google Scholar] [CrossRef]
 - Ghouma, H.; Jaseemuddin, M. Context aware resource allocation and scheduling for mobile cloud. In Proceedings of the 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, Canada, 5–7 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 67–70. [Google Scholar]
 - Zhou, Z.; Dong, M.; Ota, K.; Chang, Z. Energy-efficient context-aware matching for resource allocation in ultra-dense small cells. IEEE Access 2015, 3, 1849–1860. [Google Scholar] [CrossRef]
 - Semiari, O.; Saad, W.; Valentin, S.; Bennis, M.; Poor, H.V. Context-aware small cell networks: How social metrics improve wireless resource allocation. IEEE Trans. Wirel. Commun. 2015, 14, 5927–5940. [Google Scholar] [CrossRef]
 - Singh, S.; Zhang, X.; Andrews, J.G. Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets. IEEE Trans. Commun. 2015, 14, 5360–5373. [Google Scholar] [CrossRef]
 - Zhang, H.; Huang, S.; Jiang, C.; Long, K.; Leung, V.C.; Poor, H.V. Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE J. Sel. Areas Commun. 2017, 35, 1936–1947. [Google Scholar] [CrossRef]
 - 3GPP. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network; Physical Layer Procedures; Technical Report; 3GPP TS 36.213 version 14.4; ETSI: Sophia Antipolis, France, 2017. [Google Scholar]
 - 3GPP. Study on LTE Device to Device Proximity Services (ProSe)—Radio Aspects; Technical Report; TR 36.843; IETF: Fremont, CA, USA, 2014. [Google Scholar]
 - Radio Frequency RF System Scenarios; Technical Report; 3GPP TR 36.942 version 9.2.0 Release 9; ETSI: Sophia Antipolis, France, 2009.
 - Kyosti, P. WINNER II Channel Models. Technical ReportIST-4-027756 WINNER II D1.1.2 V1.2. 2007. Available online: https://www.cept.org/files/8339/winner2%20-%20final%20report.pdf (accessed on 7 May 2018).
 - International Telecommunication Union (ITU). Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000 Systems; Technical Report; International Telecommunication Union, Recommendation ITU: Geneva, Switzerland, 1998. [Google Scholar]
 - Ji, L.; Klein, A.; Kuruvatti, N.; Sattiraju, R.; Schotten, H.D. Dynamic Context-aware optimization of D2D communications. In Proceedings of the 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
 - Kaleem, Z.; Li, Y.; Chang, K. Public safety users priority-based energy and time-efficient device discovery scheme with contention resolution for ProSe in 3GPP LTE-A systems. IET Commun. 2016, 10, 1873–1883. [Google Scholar] [CrossRef]
 - Mehlführer, C.; Ikuno, J.C.; Šimko, M.; Schwarz, S.; Wrulich, M.; Rupp, M. The Vienna LTE simulators-Enabling reproducibility in wireless communications research. EURASIP J. Adv. Signal Process. 2011, 2011, 29. [Google Scholar] [CrossRef]
 









| Symbol | Definition | 
|---|---|
| Set of macrocell base stations | |
| Set of mobile personal cell base stations | |
| Set of users involved in communication | |
| m-th macro base station transmit power | |
| k-th mobile personal cell transmit power | |
| B | Bandwidth | 
| R | Resource blocks | 
| User association indicator for user u associated with j-th base station | |
| L, F, S | Pathloss, fading, shadowing, respectively | 
| Signal-to-noise-ratio (SINR) target control parameter | |
| Pathloss compensation factor | |
| Mobile personal cell spectrum access ratio | |
| Priority indicator | |
| Load distribution | |
| Call blocking probability | |
| SINR | 
| User Priority | User Identification | Traffic Class | Barring | Establishment Cause | 
|---|---|---|---|---|
| PS First Responders | PS Emergency; PS1 to PS5 | 12–14 | Barring for Special | High Priority Access | 
| Commercial User Emergency | Commercial User Emergency | 10 | Barring for Special | Emergency | 
| Commercial User Non-Emergency | Commercial User Non-Emergency | 0–9 | Low Barring Factor | Mobile Originating | 
| Parameters | Values | 
|---|---|
| Layout | Hexagonal with 7 Cell Sites (3 cells per site), Urban Macro | 
| mPC/MBS | 4 | 
| Carrier Frequency | 2 GHz | 
| Bandwidth, RB | 10 MHz, 50 | 
| Inter-site Distance | 500 m | 
| UL Resource Partitioning (BH:SH:AL) | PS Scenario (R/4:R/2:R/4), Non-PS Scenario (R/2:R/4:R/4) | 
| Antenna Configurations | |
| Mobility Pattern | Random Walking Model | 
| UE/mPC Speed | 3 Km/h | 
| BS/UE Transmission Power | MBS: 43 dBm, mPC: 30 dBm, UE: 23 dBm | 
| , | −80 dBm, 0.7 | 
| No. of UEs | 8/MBS, 2/mPC (PS UE: 60%, Non-PS UE: 40%) | 
| Schedulers | Round Robin (PS UEs), MCALOHA/MCALOHA-ES (Others) | 
| Pathloss Models | Urban (MBS), WINNER + B1 (mPC) | 
| Fading Model | PedB | 
| Priority Modeling | 3GPP Access Class Barring Models | 
| Thermal Noise | −174 dBm/Hz | 
| Traffic Models | Full Buffer | 
| Simulation Time | 20 Drops, 500 Subframes | 
| MBS/Cell | mPC/MBS | Average (50%) Throughput (bits/s/Hz) | Edge (5%) Throughput (bits/s/Hz) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Total | MBS | mPC | mPC BH | mPC SH | Total | MBS | mPC | mPC BH | mPC SH | ||
| 1 | 0 | 2.058 | 2.058 | 0 | 0 | 0 | 0.444 | 0.444 | 0 | 0 | 0 | 
| 1 | 4 | 2.251 | 2.049 | 5.283 | 3.354 | 3.857 | 0.447 | 0.442 | 1.263 | 0.847 | 1.160 | 
| 1 | 10 | 2.310 | 2.055 | 3.839 | 2.518 | 2.642 | 0.455 | 0.443 | 0.693 | 0.490 | 0.599 | 
| 1 | 20 | 2.270 | 2.058 | 2.9061 | 1.983 | 1.845 | 0.590 | 0.446 | 0.960 | 0.431 | 0.155 | 
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaleem, Z.; Khaliq, M.Z.; Khan, A.; Ahmad, I.; Duong, T.Q. PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks. Sensors 2018, 18, 1473. https://doi.org/10.3390/s18051473
Kaleem Z, Khaliq MZ, Khan A, Ahmad I, Duong TQ. PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks. Sensors. 2018; 18(5):1473. https://doi.org/10.3390/s18051473
Chicago/Turabian StyleKaleem, Zeeshan, Muhammad Zubair Khaliq, Ajmal Khan, Ishtiaq Ahmad, and Trung Q. Duong. 2018. "PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks" Sensors 18, no. 5: 1473. https://doi.org/10.3390/s18051473
APA StyleKaleem, Z., Khaliq, M. Z., Khan, A., Ahmad, I., & Duong, T. Q. (2018). PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks. Sensors, 18(5), 1473. https://doi.org/10.3390/s18051473
        
