A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System
Abstract
:1. Introduction
2. Proposed LDO Design
2.1. LDO Core
2.2. Stability
2.3. Transient Response
3. Experimental Validation
3.1. Static Behavior
3.2. Dynamic Behavior
3.3. Power Supply Rejection (PSR)
4. Micro-Instrument Application
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manickam, A.; Johnson, C.A.; Kavusi, S.; Hassibi, A. Interface Design for CMOS-Integrated Electrochemical Impedance Spectroscopy (EIS) Biosensors. Sensors 2012, 12, 14467–14488. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. Sensors 2017, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Aguayo, D.; del Valle, M. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy. Sensors 2018, 18, 354. [Google Scholar] [CrossRef] [PubMed]
- Shamsir, S.; Mahbub, I.; Islam, S.K. Applications of Sensing Technology for Smart Cities. In Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017. [Google Scholar]
- Cardoso, A.R.; Cabral-Miranda, G.; Reyes-Sandoval, A.; Bachmann, M.F.; Sales, M.G.F. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria. Biosens. Bioelectron. 2017, 91, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. Sensors 2017, 17, 2805. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Dong, M.; Santos, S.; Rigatto, C.; Liu, Y.; Lin, F. Lab-on-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors 2017, 17, 2934. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.H.; Rauf, S.; Catanante, G.; Nawaz, M.H.; Nunes, G.; Marty, J.L.; Hayat, A. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker. Sensors 2016, 16, 1651. [Google Scholar] [CrossRef] [PubMed]
- Valente, V.; Demosthenous, A. Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy. Sensors 2016, 16, 1159. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.I.; Zeimpekis, I.; Moschou, D.; Sun, K.; Hu, C.; Ashburn, P.; Morgan, H.; Prodromakis, T. Towards a High-Precision, Embedded System For Versatile Sensitive Biosensing Measurements. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015. [Google Scholar]
- Hassibi, A.; Zahedi, S.; Navid, R.; Dutton, R.W.; Lee, T.H. Biological shot-noise and quantum-limited signal-to-noise ratio in affinity-based biosensors. J. Appl. Phys. 2005, 97, 1–10. [Google Scholar] [CrossRef]
- Lioe, D.X.; Mars, K.; Kawahito, S.; Yasutomi, K.; Kagawa, K.; Yamada, T.; Hashimoto, M. A Stimulated Raman Scattering CMOS Pixel Using a High-Speed Charge Modulator and Lock-in Amplifier. Sensors 2016, 16, 532. [Google Scholar] [CrossRef] [PubMed]
- Márquez, A.; Pérez-Bailón, J.; Martínez, P.A.; Calvo, B.; Medrano, N. A CMOS Low-Power 12-bit Digitally Programmable Analog Sinusoidal Actuation System. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017. [Google Scholar]
- Garcia-Romeo, D.; Valero, M.R.; Medrano, N.; Calvo, B.; Celma, S. A High Performance LIA-Based Interface for Battery Powered Sensing Devices. Sensors 2015, 15, 25260–25276. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Sheng, W.; Deng, F.; Wu, X.; Fu, Z. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring. Sensors 2017, 17, 2871. [Google Scholar] [CrossRef] [PubMed]
- Jong-Ryul, Y.; Seong-Tae, H.; Donghyun, B. Differential CMOS Sub-Treahertz Detector with Subthreshold Amplifier. Sensors 2017, 17, 69. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Peng, F.; Li, Y.; Yang, T.; Wang, B.; Fang, D. A Wireless Magnetic Resonance Energy Transfer System for Micro Implantable Medical Sensors. Sensors 2012, 12, 10292–10308. [Google Scholar] [CrossRef] [PubMed]
- Crepaldi, P.C.; Pimenta, T.C.; Moreno, R.L.; Rodriguez, E.C. A Low Power CMOS Voltage Regulator for a Wireless Blood Pressure Biosensor. IEEE TIM 2012, 61, 729–739. [Google Scholar] [CrossRef]
- Leung, K.N.; Mok, P.K.T. A Capacitor-Free CMOS Low-Dropout Regulator with Damping-Factor-Control Frequency Compensation. IEEE JSSC 2003, 38, 1691–1702. [Google Scholar] [CrossRef]
- Lau, S.K.; Mok, P.K.T.; Leung, K.N. A Low-Dropout Regulator for SoC with Q-Reduction. IEEE JSSC 2007, 42, 658–664. [Google Scholar] [CrossRef]
- Bu, S.; Guo, J.; Nang Leung, K. A 200-ps-Response-Time Output-Capacitorless Low-Dropout Regulator with Unity-Gain Bandwidth >100 MHz in 130-nm CMOS. IEEE PEL 2018, 33, 3232–3246. [Google Scholar] [CrossRef]
- Milliken, R.J.; Silva-Martínez, J.; Sánchez-Sinencio, E. Full On-Chip CMOS Low-Dropout Voltage Regulator. IEEE Trans. Circuits Syst. I 2007, 54, 1879–1890. [Google Scholar] [CrossRef]
- Giustolisi, G.; Palumbo, G.; Spitale, E. Robust Miller Compensation with Current Amplifiers Applied to LDO Voltage Regulators. IEEE Trans. Circuits Syst. I 2012, 59, 1880–1893. [Google Scholar] [CrossRef]
- Rincon-Mora, G.; Allen, P. A low-voltage, low quiescent current, low drop-out regulator. IEEE JSSC 1998, 33, 36–44. [Google Scholar] [CrossRef]
- Ming, X.; Li, Q.; Zhou, Z.-K.; Zhang, B. An Ultrafast Adaptively Biased Capacitorless LDO With Dynamic Charging Control. IEEE Trans. Circuits Syst. II 2012, 5, 40–44. [Google Scholar] [CrossRef]
- Maity, A.; Patra, A. A Single-Stage Low-Dropout Regulator with a Wide Dynamic Range for Generic Applications. IEEE VLSI 2016, 24, 2117–2127. [Google Scholar] [CrossRef]
- Chen, C.M.; Hung, C.C. A fast self-reacting capacitor-less low-dropout regulator. In Proceedings of the IEEE Solid-State Circuits Conference (ESSCIRC), Helsinki, Finland, 12–16 September 2011; pp. 375–378. [Google Scholar]
- Ho, M.; Nang Leung, K. Dynamic Bias-Current Boosting Technique for Ultralow-Power Low-Dropout Regulator in Biomedical Applications. IEEE Trans. Circuits Syst. II 2011, 58, 174–178. [Google Scholar] [CrossRef]
- Amayreh, M.; Leicht, J.; Manoli, Y. A 200 ns Settling Time Fully Integrated Low Power LDO Regulator with Comparators as Transient Enhancement. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 494–497. [Google Scholar]
- Desai, C.; Mandal, D.; Bakkaloglu, B.; Kiaei, S. A 1.66 mV FOM Output Cap-Less LDO with Current-Reused Dynamic Biasing and 20 ns Settling Time. IEEE SSC Lett. 2018. [Google Scholar] [CrossRef]
- Pérez-Bailón, J.; Márquez, A.; Calvo, B.; Medrano, N. A Power Efficient LDO Regulator for Portable CMOS SoC Measurement Systems. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017. [Google Scholar]
- Pérez-Bailón, J.; Márquez, A.; Calvo, B.; Medrano, N.; Martínez, P.A. Fast-transient high-performance 0.18 µm CMOS LDO for battery-powered systems. Electron. Lett. 2017, 53, 551–552. [Google Scholar] [CrossRef]
- Understanding the Terms and Definitions of LDO Voltage Regulators. Available online: http://www.ti.com/lit/an/slva079/slva079.pdf (accessed on 26 March 2018).
- El-Nozahi, M.; Amer, A.; Torres, J.; Entesari, K.; Sánchez-Sinencio, E. High PSR Low Drop-Out Regulator with Feed-Forward Ripple Cancellation Technique. IEEE JSSC 2010, 45, 565–577. [Google Scholar] [CrossRef]
- Hazucha, P.; Karnik, T.; Bloechel, B.A.; Parsons, C.; Finan, D.; Borkar, S. Area-efficient linear regulator with ultra-fast load regulation. IEEE JSSC 2005, 40, 933–940. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Pan, Q.; Ki, W.H.; Yue, C.P. A Fully-Integrated Low-Dropout Regulator with Full-Spectrum Power Supply Rejection. IEEE Trans. Circuits Syst. I 2015, 62, 707–716. [Google Scholar] [CrossRef]
Parameter | This Work | [18] 2012 | [22] 2007 | [25] 2012 | [26] 2016 | [27] 2011 | [29] 2016 | [30] 2018 | [36] 2015 |
---|---|---|---|---|---|---|---|---|---|
CMOS Tech. (μm) | 0.18 | 0.35 | 0.35 | 0.35 | 0.18 | 0.35 | 0.35 | 0.18 | 0.065 |
Vin (V) | 1.94–3.6 | 2.0–2.4 | 3 | 2.5–4 | 1.5–1.8 | 1.642–5 | 3.7 | 1.6–1.8 | 1.2 |
Vout (V) | 1.8 | 1.073 | 2.8 | 2.35 | 1.2 | 1.5 | 3.25 | 1.4–1.6 | 1 |
Vdo (mV) @ IL,max (mA) | 140 @ 50 | 47 @ 0.5 | 200 @ 50 | 150 @ 100 | 300 @ 50 | 142 @ 100 | 300 @ 50 | 200 @ 50 | 150 @ 10 |
Iq (μA) | 7.45 | 35.7 | 65 | 7–17 | 2.4–242 | 27 | 26 | 130 | 50–90 |
CLoad (pF) | 100 | 30 | 100 | 100 | 100 | 100 | 100 | 50 | 140 |
Line Regulation (mV/V) | 0.081 | 39 | ~23 | 1 | 12.3 | 1.046 | - | 0.857 | 37.1 |
Load Regulation (mV/mA) | −0.82 | 13 | ~0.56 | 0.08 | 0.14 | 0.0752 | ~2.86 | 0.248 | 1.1 |
Full load ST (μs) | <2.5 | - | 15 | ~0.15 (a) | ~1.6 | 1 | 0.2 (b) | 0.04 (c) | 0.00115 |
PSR (dB) @ 1 kHz | ‒48 | ‒38.1 @ | ‒57 | - | <‒33 @ | −60.6 | ~‒40 | ‒70 | <‒21 |
10 MHz | 1 MHz | ||||||||
Temp. range (°C) | ‒140 | 37 | - | - | - | - | - | - | - |
Area (mm2) | 0.10 | ~1 | 0.29 | 0.064 | 0.03 | 0.2 | 0.098 | 0.023 | |
FOM1 (fs) | 0.989 | 1.086 × 106 | 1674.4 | 0.56–1.36 | 8.27–833.45 | 2.123 | - | 28567–51421 | |
FOM1 † (fs) | 0.989 | - | 1674.4 | 4.56–11.07 | 8.27–833.45 | 2.123 | - | 28567–51421 | |
FOM2 (ns) | 0.37 | - | 19.5 | 0.011–0.026 | 0.077–7.74 | 0.27 | 0.104 | 0.00575–0.01 | |
FOM2 † (ns) | 0.37 | - | 19.5 | 0.086–0.21 | 0.077–7.74 | 0.27 | - | 0.00575–0.01 | |
FOM1 † xFOM2 † (ps)2 | 0.366 | - | 32650.8 | 0.392–2.325 | 0.64–6451 | 0.573 | - | 164.26–514.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Bailón, J.; Márquez, A.; Calvo, B.; Medrano, N. A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System. Sensors 2018, 18, 1405. https://doi.org/10.3390/s18051405
Pérez-Bailón J, Márquez A, Calvo B, Medrano N. A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System. Sensors. 2018; 18(5):1405. https://doi.org/10.3390/s18051405
Chicago/Turabian StylePérez-Bailón, Jorge, Alejandro Márquez, Belén Calvo, and Nicolás Medrano. 2018. "A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System" Sensors 18, no. 5: 1405. https://doi.org/10.3390/s18051405
APA StylePérez-Bailón, J., Márquez, A., Calvo, B., & Medrano, N. (2018). A 0.18 μm CMOS LDO Regulator for an On-Chip Sensor Array Impedance Measurement System. Sensors, 18(5), 1405. https://doi.org/10.3390/s18051405