Next Article in Journal
Effective Peroxidase-Like Activity of Co-Aminoclay [CoAC] and Its Application for Glucose Detection
Next Article in Special Issue
Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours
Previous Article in Journal
Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode
Open AccessArticle

Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 100-715, Korea
*
Author to whom correspondence should be addressed.
Sensors 2018, 18(2), 456; https://doi.org/10.3390/s18020456
Received: 5 January 2018 / Revised: 31 January 2018 / Accepted: 1 February 2018 / Published: 3 February 2018
(This article belongs to the Special Issue Sensors Signal Processing and Visual Computing)
A paradigm shift is required to prevent the increasing automobile accident deaths that are mostly due to the inattentive behavior of drivers. Knowledge of gaze region can provide valuable information regarding a driver’s point of attention. Accurate and inexpensive gaze classification systems in cars can improve safe driving. However, monitoring real-time driving behaviors and conditions presents some challenges: dizziness due to long drives, extreme lighting variations, glasses reflections, and occlusions. Past studies on gaze detection in cars have been chiefly based on head movements. The margin of error in gaze detection increases when drivers gaze at objects by moving their eyes without moving their heads. To solve this problem, a pupil center corneal reflection (PCCR)-based method has been considered. However, the error of accurately detecting the pupil center and corneal reflection center is increased in a car environment due to various environment light changes, reflections on glasses surface, and motion and optical blurring of captured eye image. In addition, existing PCCR-based methods require initial user calibration, which is difficult to perform in a car environment. To address this issue, we propose a deep learning-based gaze detection method using a near-infrared (NIR) camera sensor considering driver head and eye movement that does not require any initial user calibration. The proposed system is evaluated on our self-constructed database as well as on open Columbia gaze dataset (CAVE-DB). The proposed method demonstrated greater accuracy than the previous gaze classification methods. View Full-Text
Keywords: eye gaze tracking; driver attention; NIR camera sensor; deep learning; user calibration eye gaze tracking; driver attention; NIR camera sensor; deep learning; user calibration
Show Figures

Figure 1

MDPI and ACS Style

Naqvi, R.A.; Arsalan, M.; Batchuluun, G.; Yoon, H.S.; Park, K.R. Deep Learning-Based Gaze Detection System for Automobile Drivers Using a NIR Camera Sensor. Sensors 2018, 18, 456.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop