Magnesium Alloy Matching Layer for High-Performance Transducer Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Transducers
2.2. Transducer Fabrication and Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chilibon, I. Ultrasound transducer for medical therapy. Sens. Actuators A Phys. 2008, 142, 124–129. [Google Scholar] [CrossRef]
- Ma, T.; Yu, M.; Chen, Z.; Fei, C.; Shung, K.; Zhou, Q. Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Haertling, G.H. Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 1999, 82, 798–818. [Google Scholar] [CrossRef]
- Hsu, H.S.; Zheng, F.; Li, Y.; Lee, C.; Zhou, Q.; Shung, K.K. Focused high frequency needle transducer for ultrasonic imaging and trapping. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, J.; Yang, L.; Liu, S.; Xiao, J.; Li, X.; Wang, X.; Luo, H. Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer. Sens. Actuators A Phys. 2018, 283, 273–281. [Google Scholar] [CrossRef]
- Park, C.Y.; Sung, J.H.; Jeong, J.S. Design and fabrication of ultrasound linear array transducer based on polarization inversion technique. Sens. Actuators A Phys. 2018, 280, 484–494. [Google Scholar] [CrossRef]
- Desilets, C.S.; Fraser, J.D.; Kino, G.S. The Design of Efficient Broad-Band Piezoelectric Transducers. IEEE Trans. Sonics Ultrason. 1978, 25, 115–125. [Google Scholar] [CrossRef]
- Cabrera-Munoz, N.E.; Eliahoo, P.; Wodnicki, R.; Jung, H.; Chiu, C.T.; Williams, J.A.; Kim, H.H.; Zhou, Q.; Shung, K.K. Forward-looking 30-MHz phased-array transducer for peripheral intravascular imaging. Sens. Actuators A Phys. 2018, 280, 145–163. [Google Scholar] [CrossRef]
- Manh, T.; Nguyen, A.T.T.; Johansen, T.F.; Hoff, L. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers. Ultrasonics 2014, 54, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.J.; Chen, Y.; Wong, C.M.; Qiu, W.B.; Chan, H.L.W.; Dai, J.Y.; Li, Q.; Yan, Q.F. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application. Ultrasonics 2016, 70, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cha, J.H.; Huang, Y.; Zhang, R.; Cao, W.; Shung, K.K. Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, Y.; Huang, Z.; Qiu, W.; Zhang, Z.; Wang, Z.; Dong, J.; Yang, B.; Cao, W. Magnesium Alloy Matching Layer for PMN-PT Single Crystal Transducer Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Cannata, J.M.; Ritter, T.A.; Chen, W.H.; Silverman, R.H.; Shung, K.K. Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Safari, A.; Akdoǧan, E.K. Piezoelectric and Acoustic Materials for Transducer Applications; Springer Science & Business Media: New York, NY, USA, 2008; ISBN 9780387765389. [Google Scholar]
- Erikson, K.R.; Banjavic, R.A. Standard methods for testing single-element pulse-echo ultrasonic transducers-AIUM Interim Standard. J. Ultrasound Med. 1981, 1, 1–18. [Google Scholar]
- Li, X.; Ma, T.; Tian, J.; Han, P.; Zhou, Q.; Shung, K.K. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Ultrasonic Transducers. Available online: http://www.olympus-ims.com/en/ultrasonic-transducers/ (accessed on 20 November 2018).
PZT-5H | |
---|---|
Density, ρ | 7450 kg/m3 |
Longitudinal velocity, v | 4560 m/s |
Piezoelectric constant, d33 | 670 pC/N |
Related clamped dielectric constant, εs/ε0 | 1802 |
Frequency constant (thickness mode), | 1989 Hz·m |
Electromechanical coupling coefficient, kt | 0.505 |
Acoustic impedance, Za | 34.2 MRayl |
Material 1 | Use | v (m/s) | ρ (kg/m3) | Za (MRayl) | Loss (dB/mm) |
---|---|---|---|---|---|
Tungsten/glass spheres/Epo-Tek 301 1 | Backing | 2256 | 4040 | 9.1 | N/A |
Epo-Tek 301 | Matching layer 2 | 2650 | 1150 | 3.0 | 9.5 (at 30 MHz) [14] |
AZ31B Magnesium alloy | Matching layer 1 | 5800 | 1780 | 10.3 | 0.02 (at 7.5 MHz) |
Silver–epoxy composite 2 | Matching layer | 3860 | 1900 | 7.3 | 13.8 (at 30 MHz) |
Alumina/polymer nanocomposite films 2 | Matching layer | 3200 | 1630 | 5.1 | 15 (at 40 MHz) |
Property | 5 MHz Transducer | 10 MHz Transducer |
---|---|---|
Resonance frequency | 4.4 MHz | 8.81 MHz |
Anti-resonance frequency | 4.87 MHz | 9.67 MHz |
kt(eff.) | 0.43 | 0.41 |
Active Element | Matching Materials | Backing Layers | fc (MHz) | BW (%) | IL (dB) |
---|---|---|---|---|---|
PZT-5H | AZ31B/Epo-Tek 301 | Tungsten powder/glass microspheres/Epo-Tek 301 | 4.60 | 79 | −11.11 |
PZT-5H | AZ31B/Epo-Tek 301 | Tungsten powder/glass microspheres/Epo-Tek 301 | 9.25 | 71 | −14.43 |
PZT-5A 1 | Anodic aluminum oxide-epoxy/Epo-Tek 301 | Tungsten powder/micro bubbles/Epo-Tek 301 | 11.6 | 68 | −22.7 |
PZT-5A 1 | silicon–polymer 1–3 composite/Epo-Tek 301 | Tungsten powder/micro bubbles/Epo-Tek 301 | 15 | 50 | - |
PZT 2 | 2-2 silicon–polymer composite/Spurr’s epoxy | Air | 14.6 | 70.2 | −18.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tao, J.; Guo, F.; Li, S.; Huang, X.; Dong, J.; Cao, W. Magnesium Alloy Matching Layer for High-Performance Transducer Applications. Sensors 2018, 18, 4424. https://doi.org/10.3390/s18124424
Wang Y, Tao J, Guo F, Li S, Huang X, Dong J, Cao W. Magnesium Alloy Matching Layer for High-Performance Transducer Applications. Sensors. 2018; 18(12):4424. https://doi.org/10.3390/s18124424
Chicago/Turabian StyleWang, Yulei, Jingya Tao, Feifei Guo, Shiyang Li, Xingyi Huang, Jie Dong, and Wenwu Cao. 2018. "Magnesium Alloy Matching Layer for High-Performance Transducer Applications" Sensors 18, no. 12: 4424. https://doi.org/10.3390/s18124424
APA StyleWang, Y., Tao, J., Guo, F., Li, S., Huang, X., Dong, J., & Cao, W. (2018). Magnesium Alloy Matching Layer for High-Performance Transducer Applications. Sensors, 18(12), 4424. https://doi.org/10.3390/s18124424