Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference
Abstract
:1. Introduction
2. Calibration Principle
2.1. Objective
2.2. Geometric Constraints
2.3. Calibration Procedure
3. Method
3.1. Line Detection
Algorithm 1. Line detection based on modified random sample consensus (RANSAC). | |
Input: | |
2D points: Nearest valid distance: Farthest valid distance: Threshold used to differentiate between inliers and outliers: Shortest line length: Minimum number of inliers: Maximum outer loop times: Fixed inner loop times: | |
Output: | |
The number of lines: All the lines: The inliers for each line: | |
Procedure: | |
(1) Remove the points that are too near (using ) or too far (using ) from ; (2) Repeat sampling two points and from within times until the distance between and is bigger than ; (3) Generate a 2D line model based on and : ; (4) Get the number of points to satisfy (inliers) in ; (5) Repeat (2), (3), and (4) for times, and get the line with the biggest number of inliers; (6) If the number of inliers based on is bigger than , then refine with the least-square method and recompute the inliers based on , else return all the lines and the number of them now; (7) Save to and save the inliers to ; (8) Remove the inliers from based on model ; (9) Repeat (2)–(8) until the number of points in is less than or the number of repetitions is greater than ; (10) Return the number of lines , all the lines , and . |
3.2. Line Sorting
3.3. Generating All Corridor Observation Candidates in Each Group of Data
3.4. Finding the Correct Corridor Observation in Each Group of Data
3.4.1. Coplanarity Assessment Method
3.4.2. Corridor Observation Assessment Method
3.5. Calibration Using All Correct Corridor Observations
4. Experiments and Analysis
4.1. Simulation
4.2. Real Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, C.-S.; Kim, D.; You, B.-J.; Oh, S.-R. Characterization of the Hokuyo UBG-04LX-F01 2D laser rangefinder. In Proceedings of the 19th International Symposium in Robot and Human Interactive Communication, Viareggio, Italy, 13–15 September 2010; pp. 385–390. [Google Scholar]
- Pérez, J.; Caballero, F.; Merino, L. Enhanced Monte Carlo Localization with Visual Place Recognition for Robust Robot Localization. J. Intell. Robot. Syst. 2015, 80, 641–656. [Google Scholar] [CrossRef]
- Atman, J.; Popp, M.; Ruppelt, J.; Trommer, G.F. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles. Sensors 2016, 16, 1516. [Google Scholar] [CrossRef] [PubMed]
- Huitl, R.; Schroth, G.; Hilsenbeck, S.; Schweiger, F.; Steinbach, E. TUMindoor: An extensive image and point cloud dataset for visual indoor localization and mapping. In Proceedings of the 2012 19th IEEE International Conference on Image Processing (ICIP), Orlando, FL, USA, 30 September–3 October 2012; pp. 1773–1776. [Google Scholar]
- Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robots 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar]
- Jung, J.; Yoon, S.; Ju, S.; Heo, J.J.S. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM. Sensors 2015, 15, 26430–26456. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.D.; Cho, Y.K. Real-time 3D Mobile Mapping for the Built Environment. In Proceedings of the 33rd International Symposium on Automation and Robotics in Construction (ISARC), Auburn, AL, USA, 18–21 July 2016. [Google Scholar]
- Miller, I.; Campbell, M.; Huttenlocher, D. Efficient Unbiased Tracking of Multiple Dynamic Obstacles Under Large Viewpoint Changes. IEEE Trans. Robot. 2011, 27, 29–46. [Google Scholar] [CrossRef]
- Morales, J.; Martinez, J.L.; Mandow, A.; Reina, A.J.; Pequeno-Boter, A.; Garcia-Cerezo, A. Boresight calibration of construction misalignments for 3D scanners built with a 2D laser range finder rotating on its optical center. Sensors (Basel) 2014, 14, 20025–20040. [Google Scholar] [CrossRef] [PubMed]
- Olivka, P.; Krumnikl, M.; Moravec, P.; Seidl, D. Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage. J. Sens. 2016, 2016, 3715129. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.; Yoon, S.; Kim, S.; Cho, H.; Kim, C.; Heo, J. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems. Sensors (Basel) 2015, 15, 10292–10314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debattisti, S.; Mazzei, L.; Panciroli, M. Automated extrinsic laser and camera inter-calibration using triangular targets. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 696–701. [Google Scholar]
- Gao, C.; Spletzer, J.R. On-line calibration of multiple LIDARs on a mobile vehicle platform. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 279–284. [Google Scholar]
- Moghadam, P.; Bosse, M.; Zlot, R. Line-based extrinsic calibration of range and image sensors. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3685–3691. [Google Scholar]
- Wenkai, C.; Guodong, Y.; Zize, L. An extrinsic calibration method for binocular cameras and swing 2D laser rangefinder. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 3556–3560. [Google Scholar]
- Hu, Z.; Li, Y.; Li, N.; Zhao, B. Extrinsic Calibration of 2-D Laser Rangefinder and Camera From Single Shot Based on Minimal Solution. IEEE Trans. Instrum. Meas. 2016, 65, 915–929. [Google Scholar] [CrossRef]
- Ahmad Yousef, K.M.; Mohd, B.J.; Al-Widyan, K.; Hayajneh, T. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap. Sensors (Basel) 2017, 17, 2346. [Google Scholar] [CrossRef] [PubMed]
- Schenk, K.; Kolarow, A.; Eisenbach, M.; Debes, K.; Gross, H.-M. Automatic calibration of a stationary network of laser range finders by matching movement trajectories. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 431–437. [Google Scholar]
- Quenzel, J.; Papenberg, N.; Behnke, S. Robust extrinsic calibration of multiple stationary laser range finders. In Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21–25 August 2016; pp. 1332–1339. [Google Scholar]
- Ruan, M.; Huber, D. Calibration of 3D sensors using a spherical target. In Proceedings of the 2014 2nd International Conference on 3D Vision (3DV), Tokyo, Japan, 8–11 December 2014; pp. 187–193. [Google Scholar]
- Chen, S.; Liu, J.; Wu, T.; Huang, W.; Liu, K.; Yin, D.; Liang, X.; Hyyppä, J.; Chen, R. Extrinsic Calibration of 2D Laser Rangefinders Based on a Mobile Sphere. Remote Sens. 2018, 10, 1176. [Google Scholar] [CrossRef]
- Pereira, M.; Silva, D.; Santos, V.; Dias, P. Self calibration of multiple LIDARs and cameras on autonomous vehicles. Robot. Auton. Syst. 2016, 83, 326–337. [Google Scholar] [CrossRef]
- Antone, M.E.; Friedman, Y. Fully Automated Laser Range Calibration. In Proceedings of the British Machine Vision Conference 2007 (BMVC), Coventry, UK, 10–13 September 2007; pp. 1–10. [Google Scholar]
- Almeida, M.; Dias, P.; Oliveira, M.; Santos, V. 3D-2D laser range finder calibration using a conic based geometry shape. In Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 25–27 June 2012; pp. 312–319. [Google Scholar]
- Gomez-Ojeda, R.; Briales, J.; Fernandez-Moral, E.; Gonzalez-Jimenez, J. Extrinsic calibration of a 2D laser-rangefinder and a camera based on scene corners. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3611–3616. [Google Scholar]
- Li, N.; Hu, Z.; Zhao, B. Flexible extrinsic calibration of a camera and a two-dimensional laser rangefinder with a folding pattern. Appl. Opt. 2016, 55, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Isler, V. A Novel Method for the Extrinsic Calibration of a 2D Laser Rangefinder and a Camera. IEEE Sens. J. 2018, 18, 4200–4211. [Google Scholar] [CrossRef] [Green Version]
- Keller, F.; Sternberg, H. Multi-Sensor Platform for Indoor Mobile Mapping: System Calibration and Using a Total Station for Indoor Applications. Remote Sens. 2013, 5, 5805–5824. [Google Scholar] [CrossRef] [Green Version]
- Heinz, E.; Eling, C.; Wieland, M.; Klingbeil, L.; Kuhlmann, H. Analysis of Different Reference Plane Setups for the Calibration of a Mobile Laser Scanning System. In Proceedings of the Internationalen Ingenieurvermessungskurs, Graz, Austria, 25–29 April 2017; pp. 131–146. [Google Scholar]
- Hartmann, J.; Paffenholz, J.A.; Strübing, T.; Neumann, I. Determination of Position and Orientation of LiDAR Sensors on Multisensor Platforms. J. Surv. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Heinz, E.; Eling, C.; Wieland, M.; Klingbeil, L.; Kuhlmann, H. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping. J. Appl. Geod. 2015, 9, 227–243. [Google Scholar] [CrossRef]
- Fernández-Moral, E.; González-Jiménez, J.; Arévalo, V. Extrinsic calibration of 2D laser rangefinders from perpendicular plane observations. Int. J. Robot. Res. 2015, 34, 1401–1417. [Google Scholar] [CrossRef]
- Choi, D.-G.; Bok, Y.; Kim, J.-S.; Kweon, I.S. Extrinsic calibration of 2D laser sensors. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3027–3033. [Google Scholar]
- Fernandez-Moral, E.; Arevalo, V.; Gonzalez-Jimenez, J. Extrinsic calibration of a set of 2D laser rangefinders. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2098–2104. [Google Scholar]
- Fischler, M.A.; Bolles, R.C.J. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Eade, E. Lie Groups for 2D and 3D Transformations. Available online: http://ethaneade. com/lie. pdf (accessed on 20 May 2017).
- Demski, P.; Mikulski, M.; Koteras, R. Characterization of Hokuyo UTM-30LX laser range finder for an autonomous mobile robot. In Advanced Technologies for Intelligent Systems of National Border Security; Springer: Berlin, Heidelberg/Germany, 2013; pp. 143–153. [Google Scholar]
- Navvis. The Navvis M3 Trolley. Available online: https://www.navvis.com/m3 (accessed on 21 November 2018).
Detection Range | Angular Resolution | Measurement Resolution | Field of View | Scan Speed | |
---|---|---|---|---|---|
0.1–60 m | 0.03 m | 0.25° | 0.001 m | 270° | 25 ms |
Operation Name | t Sequence | Pitch Sequence (°) | Roll Sequence (°) | Yaw Sequence (°) |
---|---|---|---|---|
A | 1, 2, …, 360 | 0 × t | 0 × t | t |
B | 1, 2, …, 360 | 0 × t + 45 | 0 × t | t |
C | 1, 2, …, 360 | sin(4 × t) × 45 + 45 | 0 × t | t |
D | 1, 2, …, 360 | sin(4 × t) × 45 + 45 | sin(4 × t) × 45 + 45 | t |
E | 1, 2, …, 360 | (360 − t) × 45/360 | 0 × t | sin(4 × t) × 90 |
F (random pose) | - | rand(360,1) × 360 | rand(360,1) × 360 | rand(360,1) × 360 |
Item | Rotation (°) | Rotation Dev. (°) | Translation (mm) | Translation Dev. (mm) |
---|---|---|---|---|
No. 1: LRF2 | −79.28, −0.63, −29.84 | 0.19, 0.05, 0.05 | 93.23, 97.27, −405.35 | 0.55, 6.85, 3.29 |
No. 2: LRF2 | −78.31, −1.11, −29.57 | 0.26, 0.14, 0.10 | 94.79, 91.65, −405.15 | 0.57, 4.51, 3.27 |
No. 3: LRF2 | −78.82, −0.84, −29.72 | 0.43, 0.23, 0.14 | 93.42, 99.60, −406.79 | 0.98, 5.81, 3.73 |
No. 1: LRF3 | 85.16, 1.14, −135.72 | 0.15, 0.04, 0.03 | −173.31, 59.24, −622.66 | 1.76, 3.04, 1.45 |
No. 2: LRF3 | 85.28, 1.24, −135.63 | 0.20, 0.05, 0.04 | −171.33, 54.08, −624.87 | 2.33, 3.73, 1.64 |
No. 3: LRF3 | 85.46, 1.27, −135.55 | 0.14, 0.06, 0.05 | −169.73, 52.64, −624.38 | 1.73, 2.44, 1.50 |
Item | Rotation (°) | Rotation Dev. (°) | Translation (mm) | Translation Dev. (mm) |
---|---|---|---|---|
No. 1: LRF2 | 90.31, 1.86, −157.87 | 0.31, 0.10, 0.05 | −97.7, 208.93, −1355.90 | 1.30, 6.96, 3.54 |
No. 2: LRF2 | 90.24, 1.80, −157.72 | 0.27, 0.08, 0.02 | −90.80, 211.66, −1350.00 | 1.56, 6.61, 4.67 |
No. 3: LRF2 | 89.80, 2.05, −158.55 | 0.39, 0.13, 0.01 | −92.66, 212.95, −1350.50 | 1.68, 10.30, 5.00 |
No. 1: LRF3 | 85.51, 1.18, 162.56 | 0.18, 0.06, 0.05 | 103.97, 212.24, −987.95 | 0.48, 2.11, 2.09 |
No. 2: LRF3 | 86.16, 1.67, 162.99 | 0.16, 0.06, 0.04 | 109.41, 211.43, −975.19 | 0.42, 1.92, 2.83 |
No. 3: LRF3 | 86.38, 1.53, 162.44 | 0.51, 0.13, 0.05 | 104.68, 205.66, −976.37 | 1.30, 6.96, 3.54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Liu, J.; Wu, T.; Liu, K.; Hyyppä, J.; Chen, R. Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference. Sensors 2018, 18, 4371. https://doi.org/10.3390/s18124371
Yin D, Liu J, Wu T, Liu K, Hyyppä J, Chen R. Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference. Sensors. 2018; 18(12):4371. https://doi.org/10.3390/s18124371
Chicago/Turabian StyleYin, Deyu, Jingbin Liu, Teng Wu, Keke Liu, Juha Hyyppä, and Ruizhi Chen. 2018. "Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference" Sensors 18, no. 12: 4371. https://doi.org/10.3390/s18124371
APA StyleYin, D., Liu, J., Wu, T., Liu, K., Hyyppä, J., & Chen, R. (2018). Extrinsic Calibration of 2D Laser Rangefinders Using an Existing Cuboid-Shaped Corridor as the Reference. Sensors, 18(12), 4371. https://doi.org/10.3390/s18124371