# Magnetoconductivity and Terahertz Response of a HgCdTe Epitaxial Layer

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### The Sample and Experimental Procedures

## 3. Results

#### 3.1. Tensor of Magnetoconductivity and Mobility of Carriers in the Epitaxial Layer

#### 3.2. THz Spectroscopy of the Epitaxial Layer

## 4. Discussion

#### 4.1. Magnetoconductivity

#### 4.2. THz Spectroscopy

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

**Figure A1.**(

**a**) Input data to test the numerical procedure of the mobility spectrum calculations. (

**b**–

**d**) Mobility spectrum calculated for different parameters N, $\delta B$ and ${B}_{max}$, as described in the text.

## References

- Brucherseifer, M.; Nagel, M.; Haring Bolivar, P.; Kurz, H.; Bosserhoff, A.; Büttner, R. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett.
**2000**, 77, 4094. [Google Scholar] [CrossRef] - Zangeneh-Nejad, F.; Safian, R. A graphene-based THz ring resonator for label-free sensing. IEEE Sens. J.
**2015**, 16, 4338–4344. [Google Scholar] [CrossRef] - Zangeneh-Nejad, F.; Safian, R. Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing. Opt. Commun.
**2016**, 371, 9–14. [Google Scholar] [CrossRef] - Padilla, W.J.; Basov, D.N.; Smith, D.R. Negative refractive index metamaterials. Mater. Today
**2006**, 9, 28–35. [Google Scholar] [CrossRef] - Debus, C.; Haring Bolivar, P. Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett.
**2007**, 91, 184102. [Google Scholar] [CrossRef] - Singh, R.; Cao, W.; Al-Naib, I.; Cong, L.; Withayachumnankul, W.; Zhang, W. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett.
**2014**, 105, 171101. [Google Scholar] [CrossRef] [Green Version] - Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics
**2013**, 7, 680–690. [Google Scholar] [CrossRef] - Berry, C.W.; Wang, N.; Hashemi, M.R.; Unlu, M.; Jarrahi, M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun.
**2013**, 4, 1622. [Google Scholar] [CrossRef] [Green Version] - Yang, S.-H.; Hashemi, M.R.; Berry, C.W.; Jarrahi, M. 7.5% Optical-to-Terahertz Conversion Efficiency Offered by Photoconductive Emitters With Three-Dimensional Plasmonic Contact Electrodes. IEEE Trans. Terahertz Sci. Technol.
**2014**, 4, 575–581. [Google Scholar] [CrossRef] - Łusakowski, J. Plasmon—Terahertz photon interaction in high-electron-mobility heterostructures. Semicond. Sci. Technol.
**2017**, 32, 013004. [Google Scholar] [CrossRef] - Zangeneh-Nejad, F.; Safian, R. Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure. J. Nanophotonics
**2016**, 10, 036005. [Google Scholar] [CrossRef] - Billot, R.; Agnese, P.; Augueres, J.-L.; Beguin, A.; Bouere, A.; Boulade, O.; Cara, C.; Cloue, C.; Doumayrou, E.; Duband, L.; et al. The Herschel/PACS 2560 bolometers imaging camera. In Proceedings of the Space Telescopes and Instrumentation I, Orlando, FL, USA, 24–31 May 2006. [Google Scholar] [CrossRef]
- Putley, E.H. Indium antimonide submillimeter photoconductive detectors. Appl. Opt.
**1965**, 4, 649–657. [Google Scholar] [CrossRef] - Vasilyev, Y.B.; Usikova, A.A.; Il’inskaya, N.D.; Petrov, P.V.; Ivanov, Y.L. Highly sensitive submillimeter InSb photodetectors. Semiconductors
**2008**, 42, 1258–1260. [Google Scholar] [CrossRef] - Chochol, J.; Postava, K.; Čada, M.; Vanwolleghem, M.; Halagačka, L.; Lampin, J.-F.; Pištora, J. Magneto-optical properties of InSb for THz applications. AIP Adv.
**2016**, 6, 115021. [Google Scholar] [CrossRef] - Graf, M.; Scalari, G.; Hofstetter, D.; Faist, J.; Beere, H.; Linfield, E.; Ritchie, D.; Davies, G. Terahertz range quantum well infrared photodetector. Appl. Phys. Lett.
**2004**, 84, 475–477. [Google Scholar] [CrossRef] [Green Version] - Luo, H.; Liu, C.H.; Song, C.Y.; Wasilewski, Z.R. Background-limited terahertz quantum—Well photodetector. Appl. Phys. Lett.
**2005**, 86, 231103. [Google Scholar] [CrossRef] - Palaferri, D.; Todorov, Y.; Chen, Y.N.; Madeo, J.; Vasanelli, A.; Li, L.H.; Davies, A.G.; Linfield, E.H.; Sirtori, C. Patch antenna terahertz photodetectors. Appl. Phys. Lett.
**2015**, 106, 161102. [Google Scholar] [CrossRef] [Green Version] - Tretyakov, I.; Ryabchun, S.; Finkel, M.; Maslennikova, A.; Kaurova, N.; Lobastova, A.; Voronov, B.; Gol’tsman, G. Low noise and wide bandwidth of NbN hot-electron bolometer mixers. Appl. Phys. Lett.
**2011**, 98, 033507. [Google Scholar] [CrossRef] - Tretyakov, I.; Ryabchun, S.; Finkel, M.; Maslennikov, S.; Maslennikova, A.; Kaurova, N.; Lobastova, A.; Voronov, B.; Gol’tsman, G. Ultrawide Noise Bandwidth of NbN Hot-Electron Bolometer Mixers With In Situ Gold Contacts. IEEE Trans. Appl. Supercond.
**2011**, 21, 620–623. [Google Scholar] [CrossRef] - Ryabchun, S.; Tong, C.Y.E.; Paine, S.; Lobanov, Y.; Blundell, R.; Gol’sman, G. Temperature Resolution of an HEB Receiver at 810 GHz. IEEE Trans. Appl. Supercond.
**2009**, 19, 293–296. [Google Scholar] [CrossRef] - Hubers, W.-W.; Pavlov, S.G.; Holldack, K.; Schade, U.; Wustefeld, G. Long wavelength response of unstressed and stressed Ge:Ga detectors. Proc. SPIE
**2006**, 6275, 627505. [Google Scholar] [CrossRef] - Poglitsch, A.; Katterloher, R.O.; Hoenle, R.; Beeman, J.W.; Haller, E.E.; Richter, H.; Groezinger, U.; Haegel, N.M.; Krabbe, A. Far-infrared photoconductor arrays for Herschel and SOFIA. Proc. SPIE
**2003**, 4855, 115–128. [Google Scholar] [CrossRef] - Haller, E.E.; Hueschen, M.R.; Richards, P.L. Ge:Ga hotoconductors in low infrared backgrounds. Appl. Phys. Lett.
**1979**, 34, 495–497. [Google Scholar] [CrossRef] - Lawson, W.D.; Nielsen, S.; Putley, E.H.; Young, A.S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Sol.
**1959**, 9, 325–329. [Google Scholar] [CrossRef] - Dornhaus, R.; Nimtz, G. The properties and applications of the Hg
_{1-x}Cd_{x}Te system. In Narrow-Gap Semiconductors; Solid-State Physics, Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 78, p. 1. ISBN 978-3-540-07774-9. [Google Scholar] - Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys.
**2005**, 68, 2267–2336. [Google Scholar] [CrossRef] - Downs, C.; Vandervelde, T.E. Progress in infrared detectors since 2000. Sensors
**2013**, 13, 5054–5098. [Google Scholar] [CrossRef] - Kane, E.O. Band structure of Indium Antimonide. J. Phys. Chem. Solids
**1957**, 1, 249–261. [Google Scholar] [CrossRef] - Weiler, M.H.; Aggarwal, R.L.; Lax, B. Interband magnetoreflectance in semiconducting Hg
_{1-x}Cd_{x}Te alloys. Phys. Rev. B**1977**, 16, 3603–3607. [Google Scholar] [CrossRef] - Rogalski, A. Infrared detectors: Status and trends. Prog. Quantum Electron.
**2003**, 27, 59–210. [Google Scholar] [CrossRef] - Zawadzki, W. Semirelativity in semiconductors: A review. J. Phys. Condens. Matter
**2017**, 29, 373004. [Google Scholar] [CrossRef] - Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S.S.; Ruffenach, S.; Consejo, C.; Kadykov, A.M.; Desrat, W.; But, D.; Knap, W.; Ludwig, J.; et al. Temperature-driven massless Kane fermions in HgCdTe crystals. Nat. Commun.
**2016**, 7, 12576. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Orlita, M.; Basko, D.M.; Zholudev, M.S.; Teppe, F.; Knap, W.; Gavrilenko, V.I.; Mikhailov, N.N.; Dvoretskii, S.A.; Neugebauer, P.; Faugeras, C.; et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nat. Phys.
**2014**, 10, 233–238. [Google Scholar] [CrossRef] [Green Version] - Moore, J.E. The birth of topological insulators. Nature
**2010**, 46, 194–198. [Google Scholar] [CrossRef] [PubMed] - Tomaka, G.; Grendysa, J.; Marchewka, M.; Śliż, P.; Becker, C.R.; Stadler, A.; Sheregii, E.M. Topological insulators based on the semi-metallic HgCdTe. Opto-Electron. Rev.
**2017**, 25, 188–197. [Google Scholar] [CrossRef] - Knap, W.; Dur, D.; Raymond, A.; Meny, C.; Leotin, J.; Huant, S.; Etienne, B. A far-infrared spectrometer based on cyclotron resonance emission sources. Rev. Sci. Instrum.
**1992**, 63, 3293–3297. [Google Scholar] [CrossRef] - Białek, M.; Czapkiewicz, M.; Wróbel, J.; Umansky, V.; Łusakowski, J. Plasmon dispersions in high electron mobility terahertz detectors. Appl. Phys. Lett.
**2007**, 104, 263514. [Google Scholar] [CrossRef] - Białek, M.; Grigelionis, I.; Nogajewski, K.; Łusakowski, J. Plasmon—Photon coupling in high-electron-mobility heterostructures: Tutorial on magnetoplasmon spectroscopy. In Spin Orbitronics and Topological Properties of Nanostructures; Dugaev, V., Tralle, I., Wal, A., Barnaś, J., Eds.; World Scientific: Singapore, 2016; ISBN 978-0-00-098737-2. [Google Scholar]
- Knap, W.; Łusakowski, J.; Karpierz, K.; Orsal, B.; Robert, J.-L. Improved performance of magnetically tunable GaAs and InP far-infrared detectors. J. Appl. Phys.
**1992**, 72, 680–683. [Google Scholar] [CrossRef] - Szot, M.; Karpierz, K.; Kossut, J.; Grynberg, M. Potential fluctuations in 2D MBE CdTe/CdMgTe quantum well, experimental proof of the nature of fluctuations. AIP Conf. Proc.
**2007**, 893, 251–252. [Google Scholar] [CrossRef] - Yavorskiy, D.; Karpierz, K.; Grynberg, M.; Knap, W.; Łusakowski, J. Indium antimonide detector for spectral characterization of terahertz sources. J. Appl. Phys.
**2018**, 123, 064502. [Google Scholar] [CrossRef] - Bąk, M.M.; Yavorskiy, D.; Karpierz, K.; Łusakowski, J.; But, D.; Przybytek, J.; Yahniuk, I.; Cywiński, G.; Knap, W.; Teppe, F.; et al. Magnetoconductivity of a Mercury Cadmium Telluride Resonant THz Detector. Acta Phys. Polonica
**2018**, 134, 973–977. [Google Scholar] [CrossRef] - Dziuba, Z. Analysis of Electrical Conduction in Epitaxial Layer Structures Using the Mobility Spectrum Technique. Phys. Stat. Sol. A
**1996**, 153, 445–457. [Google Scholar] [CrossRef] - Kiatgamolchai, S.; Myronov, M.; Mironov, O.A.; Kantser, V.G.; Parker, E.H.; Whall, T.E. Mobility spectrum computational analysis using a maximum entropy approach. Phys. Rev. E
**2002**, 036705–1–9. [Google Scholar] [CrossRef] [PubMed] - Tunable THz Polarization Converter. Available online: http://www.tydexoptics.com/products/thz_optics/tunable_thz_polarization_converter/ (accessed on 7 December 2018).
- Nagai, M.; Mukai, N.; Minowa, Y.; Ashida, M.; Takayanagi, J.; Ohtake, H. Achromatic THz wave plate composed of stacked parallel metal plates. Opt. Lett.
**2014**, 39, 146–149. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Evolution of bands in Hg${}_{1-x}$Cd${}_{x}$Te mixed crystals as a function of Cadmium content, x.

**Figure 2.**A content of Cadmium in the epitaxial layer studied as a function of the distance from the sample’s surface (at d = 0).

**Figure 3.**A voltage drop ${U}_{12}$ between two adjacent contacts (1 and 2) registered at the current of 1 $\mathsf{\mu}$A supplied to the other pair of contacts (3 and 4). The horizontal scale shows the current flowing through the superconducting coil expressed as a coil magnetic field with the coil constant of 6.393 A/T.

**Figure 4.**Components of the conductivity tensor at 120 K (

**left**) and 2 K (

**right**). Points: experimental results; smooth solid lines—fits of Equation (1) with N = 1. Note a different range of B in the two panels.

**Figure 5.**Evolution of the mobility spectrum as a function of temperature. Negative mobility corresponds to electrons, positive mobility to holes. The right panel shows an enlarged zero-centered part of the left panel. The spectra are shifted vertically for better presentation. Downward triangles mark results of fit of Equation (1) with N = 1.

**Figure 7.**Transmission of 2.54 THz radiation in an experimental configuration with a circular polarizer.

**Figure 8.**

**Left**: photocurrent (normalized to the value at B = 0) measured at monochromatic excitation with radiation of frequency indicated in the right panel;

**Right**: photoconductivity (normalized to the value at B = 0) at indicated frequencies. The curves in both panels are shifted vertically for better presentation.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yavorskiy, D.; Karpierz, K.; Baj, M.; Bąk, M.M.; Mikhailov, N.N.; Dvoretsky, S.A.; Gavrilenko, V.I.; Knap, W.; Teppe, F.; Łusakowski, J.
Magnetoconductivity and Terahertz Response of a HgCdTe Epitaxial Layer. *Sensors* **2018**, *18*, 4341.
https://doi.org/10.3390/s18124341

**AMA Style**

Yavorskiy D, Karpierz K, Baj M, Bąk MM, Mikhailov NN, Dvoretsky SA, Gavrilenko VI, Knap W, Teppe F, Łusakowski J.
Magnetoconductivity and Terahertz Response of a HgCdTe Epitaxial Layer. *Sensors*. 2018; 18(12):4341.
https://doi.org/10.3390/s18124341

**Chicago/Turabian Style**

Yavorskiy, Dmitriy, Krzysztof Karpierz, Michał Baj, Małgorzata M. Bąk, Nikolai N. Mikhailov, Sergey A. Dvoretsky, Vladimir I. Gavrilenko, Wojciech Knap, Frederic Teppe, and Jerzy Łusakowski.
2018. "Magnetoconductivity and Terahertz Response of a HgCdTe Epitaxial Layer" *Sensors* 18, no. 12: 4341.
https://doi.org/10.3390/s18124341