Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution
Abstract
:1. Introduction
2. Temperature Characteristics in the PA Measurement
2.1. Theoretical Model
2.2. Temperature Characteristics of the Photoacoustic (PA) Signals
3. Experiment
3.1. Experiment System and Equipment
3.2. PA Signal and Temperature Test with Different Intensities of Light
3.3. Experiment of PA Temperature Characteristics with Different Concentrations
4. Discussion
- Measuring the PA signal amplitude with different light intensities and temperature;
- Multiplying the coefficient of unit light intensity by the light intensities;
- Multiplying the result of Step 2 by the difference between measured temperature and 36.5 °C;
- The sum of measured amplitude and result of Step 3 is the compensated result.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas English Edition 2017. Available online: http://diabetesatlas.org/resources/2017-atlas.html (accessed on 26 November 2018).
- Chen, C.; Zhao, X.L.; Li, Z.H.; Zhu, Z.G.; Qian, S.H.; Flewitt, A.J. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors 2017, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.M.; Chua, S.S.; Ng, C.J. Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: A qualitative study. Patient Prefer. Adher. 2014, 8, 237–238. [Google Scholar] [CrossRef]
- Knowles, S.R.; Lee, K.; Paterson, J.M.; Shah, B.R.; Mamdani, M.M.; Juurlink, D.N.; Gomes, T. Self-Monitoring of Blood Glucose: Impact of Quantity Limits in Public Drug Formularies on Provincial Costs Across Canada. Can. J. Diabetes 2017, 41, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Caswell, M.; Frank, J.; Viggiani, M.T.; Pardo, S.; Dunne, N.; Warchal-Windham, M.E.; Morin, R. Accuracy and User Performance Evaluation of a Blood Glucose Monitoring System. Diabetes Technol. Ther. 2015, 17, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4563–4565. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Zhang, Y.; Lloret, J.; Song, H.; Obradovic, Z. Pain-free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Rev. Biomed. Eng. 2018, 11, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Tao, W.; He, Q.; Zhao, H.; Yang, H. Glucose solution determination based on liquid photoacoustic resonance. Appl. Opt. 2017, 56, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Higuchi, Y.; Camou, S. Non-invasive measurement of aqueous glucose solution at physiologically relevant blood concentration levels with differential continuous-wave laser photoacoustic technique. In Proceedings of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015. [Google Scholar]
- Ling, T.H.Y.; Wong, L.J.; Tan, J.E.H.; Kiu, K.Y. Non-intrusive human body temperature acquisition and monitoring system. In Proceedings of the 2015 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, Malaysia, 9–12 February 2015; pp. 16–20. [Google Scholar]
- Lereu, A.L.; Passian, A.; Farahi, R.H.; van Hulst, N.F.; Ferrell, T.L.; Thundat, T. Thermoplasmonic shift and dispersion in thin metal films. J. Vac. Sci. Technol. A 2018, 26, 836–840. [Google Scholar] [CrossRef]
- Lereu, A.L.; Farahi, R.H.; Tetard, L.; Enoch, S.; Thundat, T.; Passian, A. Plasmon assisted thermal modulation in nanoparticles. Opt. Express 2013, 21, 12145–12158. [Google Scholar] [CrossRef] [PubMed]
- Tetard, L.; Passian, A.; Farahi, R.H.; Thundat, T.; Davison, B.H. Opto-nanomechanical spectroscopic material characterization. Nat. Nanotechnol. 2015, 10, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.; Weeber, J.-C.; Zacharatos, F.; Hassan, K.; Bernardin, T.; Cluzel, B.; Fatome, J.; Finot, C. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths. Opt. Express 2013, 21, 22269–22284. [Google Scholar] [CrossRef] [PubMed]
- Alabastri, A.; Malerba, M.; Calandrini, E.; Manjavacas, A.; De Angelis, F.; Toma, A.; Proietti Zaccaria, R. Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures. Nano Lett. 2017, 17, 5472–5480. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, L.; Li, C.Y.; Liu, Y.; Ke, H.X.; Zhang, C.; Wang, L.V. Single-cell photoacoustic thermometry. J. Biomed. Opt. 2013, 18, 026003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, H.X.; Tai, S.; Wang, L.V. Photoacoustic thermography of tissue. J. Biomed. Opt. 2014, 19, 026003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Frey, W.; Walker, C.; Aglyamov, S.; Emelianov, S. Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping. J. Biophotonics 2013, 6, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Wei, C.W.; Jee, S.H.; Li, P.C. Photoacoustic temperature measurements for monitoring of thermal therapy. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Jose, CA, USA, 24–29 January 2009. [Google Scholar] [CrossRef]
- Pramanik, M.; Wang, L.V. Thermoacoustic and photoacoustic sensing of temperature. J. Biomed. Opt. 2009, 14, 061219. [Google Scholar] [CrossRef] [PubMed]
- Larina, I.; Larin, K.; Esenaliev, R. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D Appl. Phys. 2005, 38, 2633–2639. [Google Scholar] [CrossRef]
- Yao, J.J.; Ke, H.X.; Tai, T.; Zhou, Y.; Wang, L.V. Absolute photoacoustic thermometry in deep tissue. Opt. Lett. 2013, 38, 5228–5231. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 2009, 3, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Kottmann, J.; Rey, J.M.; Sigris, M.W. Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics. Sensors 2016, 16, 1663. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tajima, T.; Seyama, M. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Jose, CA, USA, 27 January–1 February 2018. [Google Scholar] [CrossRef]
- Mahmoodkalayeh, S.; Jooya, H.Z.; Hariri, A.; Zhou, Y.; Xu, Q.Y.; Ansari, M.A.; Avanaki, M.R.N. Low Temperature-Mediated Enhancement of Photoacoustic Imaging Depth. Sci. Rep. 2018, 8, 4873. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.K.; Wang, L.V. Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Jose, CA, USA, 2–7 February 2013. [Google Scholar] [CrossRef]
- Liang, S.; Lashkari, B.; Choi, S.; Ntziachristos, V.; Mandelis, A. The application of frequency-domain photoacoustics to temperature-dependent measurements of the Grüneisen parameter in lipids. Photoacoustics 2018, 11, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Holthoff, E.L.; Pellegrino, P.M. Photoacoustic spectroscopy for chemical detection. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, Baltimore, MD, USA, 23–27 April 2012. [Google Scholar]
- Patel, C.K.N.; Tam, A.C. Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 1981, 53, 518–521. [Google Scholar] [CrossRef]
- Quan, K.M.; Christison, G.B.; Mackenzie, H.A.; Hodgson, P. Glucose determination by a pulsed photoacoustic technique: An experimental study using a gelatin-based tissue phantom. Phys. Med. Biol. 1993, 38, 1915–1916. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The Near Infrared Absorption Spectrum of Liquid Water. J. Opt. Soc. Am. 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Darros-Barbosa, R.; Balaban, M.O.; Teixeira, A.A. Temperature and concentration dependence of density of model liquid foods. Int. J. Food Prop. 2003, 6, 195–214. [Google Scholar] [CrossRef]
- Contreras, N.I.; Fairley, P.; Mcclements, D.J.; Povey, M.J.W. Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. Int. J. Food Sci. Technol. 1992, 27, 519–521. [Google Scholar] [CrossRef]
- Darros-Barbosa, R. High Pressure and Temperature Dependence of Thermodynamic Properties of Model Food Solutions Obtained from In Situ Ultrasonic Measurements. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2003. [Google Scholar]
- Liao, Y.; Jian, X.H.; Dong, F.L.; Cui, Y.Y. Dual-wavelengths photoacoustic temperature measurement. In Proceedings of the Second International Conference on Photonics and Optical Engineering, Xi’an, China, 14–17 October 2017. [Google Scholar] [CrossRef]
- Li, Z.F.; Chen, H.Y.; Zhou, F.F.; Li, H.; Chen, W.R. Interstitial Photoacoustic Sensor for the Measurement of Tissue Temperature during Interstitial Laser Phototherapy. Sensors 2015, 15, 5583–5593. [Google Scholar] [CrossRef] [Green Version]
- Landa, F.J.O.; Deán-Ben, X.; Sroka, R.; Razansky, D. Volumetric Optoacoustic Temperature Mapping in Photothermal Therapy. Sci. Rep. 2017, 7, 9695. [Google Scholar] [CrossRef]
- Petrova, E.; Ermilov, S.; Su, R.; Nadvoretskiy, V.; Conjusteau, A.; Oraevsky, A. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Opt. Express 2013, 21, 25077–25090. [Google Scholar] [CrossRef] [Green Version]
i | 1 | 2 | 3 |
---|---|---|---|
xi | 1.0006 | −4.9260 × 10−5 | −4.0970 × 10−6 |
yi | 3.9280 × 10−3 | −4.8810 × 10−7 | −2.6290 × 10−8 |
zi | −3.1670 × 10−6 | 1.8650 × 10−8 | −1.4220 × 10−10 |
j | i | ||
---|---|---|---|
1 | 2 | 3 | |
0 | 5.7416 | −1.0565 × 10−2 | 1.7381 × 10−5 |
1 | −1.8569 × 10−2 | 9.2023 × 10−5 | −1.3186 × 10−7 |
2 | 1.5461 × 10−5 | −8.4373 × 10−8 | 1.2838 × 10−10 |
Light Level | Temperature Coefficient (V/°C) | Light Intensity (V) |
---|---|---|
1 | 0.0458 | 1.6130 |
2 | 0.0676 | 1.8236 |
3 | 0.0986 | 2.1010 |
4 | 0.1235 | 2.5351 |
5 | 0.1179 | 2.9457 |
6 | 0.1323 | 3.4897 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Lu, Z.; He, Q.; Lv, P.; Wang, Q.; Zhao, H. Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution. Sensors 2018, 18, 4323. https://doi.org/10.3390/s18124323
Tao W, Lu Z, He Q, Lv P, Wang Q, Zhao H. Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution. Sensors. 2018; 18(12):4323. https://doi.org/10.3390/s18124323
Chicago/Turabian StyleTao, Wei, Zhiqian Lu, Qiaozhi He, Pengfei Lv, Qian Wang, and Hui Zhao. 2018. "Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution" Sensors 18, no. 12: 4323. https://doi.org/10.3390/s18124323
APA StyleTao, W., Lu, Z., He, Q., Lv, P., Wang, Q., & Zhao, H. (2018). Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution. Sensors, 18(12), 4323. https://doi.org/10.3390/s18124323