Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors
Abstract
1. Introduction
1.1. Resistive
1.2. Inductive
1.3. Capacitive
1.4. Fiber Bragg Grating
2. Sensor Design
2.1. Piezoresistive Theory
2.2. Sensor Description
3. Finite Element Model
4. Analytical Model for Five-Layer Structure
5. Results
5.1. FEM vs. Analytical Model
5.2. Effect of Surface Trench on Signal Output
5.3. Geometric Optimization of Surface Features
5.3.1. Out-of-Plane Shear Stress Sensor
5.3.2. Out-of-Plane Normal Stress Sensor
6. Microfabrication Process Flow
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kolitawong, C.; Giacomin, A.J.; Johnson, L.M. Invited article: Local shear stress transduction. Rev. Sci. Instrum. 2010, 81, 021301. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, T. Shear force sensor for robots. In Proceedings of the IEEE International Symposium on Industrial Electronics, Warsaw, Poland, 17–20 June 1996; pp. 49–53. [Google Scholar]
- Kulinyi, S.; Vegvari, R.; Pongracz, A.; Nagy, A.; Karpati, T.; Adam, M.; Battistig, G.; Bársony, I. Flexible packaging for tyre integrated shear force sensor. In Proceedings of the 2012 IEEE Sensors, Taipei, Taiwan, 28–31 October 2012; pp. 1–4. [Google Scholar]
- Noda, K.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators Phys. 2006, 127, 295–301. [Google Scholar] [CrossRef]
- Hwang, E.S.; Seo, J.H.; Kim, Y.J. A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J. Microelectromech. Syst. 2007, 16, 556–563. [Google Scholar] [CrossRef]
- Celzard, A.; Furdin, G.; Mareche, J.F.; McRae, E. Non-linear current-voltage characteristics in anisotropic epoxy resin-graphite flake composites. J. Mater. Sci. 1997, 32, 1849–1853. [Google Scholar] [CrossRef]
- Oskouyi, A.B.; Sundararaj, U.; Mertiny, P. Current-voltage characteristics of nanoplatelet-based conductive nanocomposites. Nanoscale Res. Lett. 2014, 9, 369. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Madrid, L.; Matute, A.; Bareño, J.O.; Parra Vargas, C.A.; Gutierrez Velásquez, E.I. Underlying physics of conductive polymer composites and force sensing resistors (FSRs). A study on creep response and dynamic loading. Materials 2017, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Madrid, L.; Palacio, C.A.; Matute, A.; Parra Vargas, C.A. Underlying physics of conductive polymer composites and force sensing resistors (fsrs) under static loading conditions. Sensors 2017, 17, 2108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Beebe, D.J. A silicon-based shear force sensor: development and characterization. Sens. Actuators Phys. 2000, 84, 33–44. [Google Scholar] [CrossRef]
- Wang, L.; Beebe, D.J. Characterization of a silicon-based shear-force sensor on human subjects. IEEE Trans. Biomed. Eng. 2002, 49, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.C.; Fang, Y.K.; Ju, M.-S.; Chen, G.-S.; Ho, J.-J.; Yang, C.H.; Wu, P.M.; Wu, G.S.; Chen, T.Y.-F. A contact-type piezoresistive micro-shear stress sensor for above-knee prosthesis application. J. Microelectromech. Syst. 2001, 10, 121–127. [Google Scholar] [CrossRef]
- Shi, X.; Cheng, C.H.; Chao, C.; Wang, L.; Zheng, Y. A piezoresistive normal and shear force sensor using liquid metal alloy as gauge material. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; pp. 483–486. [Google Scholar]
- Shi, X.; Cheng, C.-H.; Zheng, Y.; Wai, P.K.A. An EGaIn-based flexible piezoresistive shear and normal force sensor with hysteresis analysis in normal force direction. J. Micromech. Microeng. 2016, 26, 105020. [Google Scholar] [CrossRef]
- Lemke, B.; Baumann, M.; Gieschke, P.; Baskaran, R.; Paul, O. Piezoresistive CMOS-compatible sensor for out-of-plane shear stress. Sens. Actuators Phys. 2013, 189, 488–495. [Google Scholar] [CrossRef]
- Djuric, S.M.; Nagy, L.F.; Damnjanovic, M.S. Detection of ground reaction force using a miniaturized inductive displacement sensor. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. 7–12. [Google Scholar]
- Damnjanovic, M.S.; Zivanov, L.D.; Nagy, L.F.; Djuric, S.M.; Biberdzic, B.N. A novel approach to extending the linearity range of displacement inductive sensor. IEEE Trans. Magn. 2008, 44, 4123–4126. [Google Scholar] [CrossRef]
- Du, L.; Zhu, X.; Zhe, J. An inductive sensor for real-time measurement of plantar normal and shear forces distribution. IEEE Trans. Biomed. Eng. 2015, 62, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-K.; Chang, H.-C.; Fang, W. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface. J. Micromech. Microeng. 2018, 28, 044005. [Google Scholar] [CrossRef]
- Lai, Y.T.; Lin, C.L.; Huang, X.H.; Cheng, M.Y.; Yang, Y.J. A flexible tactile sensing array for robot applications. In Proceedings of the 2010 IEEE Sensors, Kona, HI, USA, 1–4 November 2010; pp. 2599–2602. [Google Scholar]
- Sundara-Rajan, K.; Rowe, G.I.; Simon, A.J.; Klute, G.K.; Ledoux, W.R.; Mamishev, A.V. Shear sensor for lower limb prosthetic applications. In Proceedings of the 2009 First Annual ORNL Biomedical Science Engineering Conference, Oak Ridge, TN, USA, 18–19 March 2009; pp. 1–4. [Google Scholar]
- Lee, H.K.; Chung, J.; Chang, S.I.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934–942. [Google Scholar] [CrossRef]
- Tjin, S.C.; Suresh, R.; Ngo, N.Q. Fiber Bragg grating based shear-force sensor: modeling and testing. J. Light. Technol. 2004, 22, 1728–1733. [Google Scholar] [CrossRef]
- Candiani, A.; Konstantaki, M.; Pamvouxoglou, A.; Pissadakis, S. A shear sensing pad, based on ferrofluidic actuation in a microstructured optical fiber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 210–216. [Google Scholar] [CrossRef]
- Suhling, J.C.; Jaeger, R.C. Silicon piezoresistive stress sensors and their application in electronic packaging. IEEE Sens. J. 2001, 1, 14–30. [Google Scholar] [CrossRef]
- Gharib, H.H.; Moussa, W.A. On the feasibility of a new approach for developing a piezoresistive 3D Stress sensing rosette. IEEE Sens. J. 2011, 11, 1861–1871. [Google Scholar] [CrossRef]
- Tufte, O.N.; Chapman, P.W.; Long, D. Silicon diffused-element piezoresistive diaphragms. J. Appl. Phys. 1962, 33, 3322–3327. [Google Scholar] [CrossRef]
- Singh, R.; Ngo, L.L.; Seng, H.S.; Mok, F.N.C. A silicon piezoresistive pressure sensor. In Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, Christchurch, New Zealand, 29–31 January 2002; pp. 181–184. [Google Scholar]
- Matsuoka, Y.; Yamamoto, Y.; Yamada, K.; Shimada, S.; Tanabe, M.; Yasukawa, A.; Matsuzaka, H. Characteristic analysis of a pressure sensor using the silicon piezoresistance effect for high-pressure measurements. J. Micromech. Microeng. 1995, 5, 25. [Google Scholar] [CrossRef]
- Bae, B.; Flachsbart, B.R.; Park, K.; Shannon, M.A. Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J. Micromech. Microeng. 2004, 14, 1597. [Google Scholar] [CrossRef]
- Petersen, K.; Brown, J.; Vermeulen, T.; Barth, P.; Mallon, J.; Bryzek, J. Ultra-stable, high-temperature pressure sensors using silicon fusion bonding. Sens. Actuators Phys. 1990, 21, 96–101. [Google Scholar] [CrossRef]
- Chau, K.H.L.; Fung, C.D.; Harris, P.R.; Dahrooge, G.A. A versatile polysilicon diaphragm pressure sensor chip. In Proceedings of the International Electron Devices Meeting, Washington, DC, USA, 8–11 December 1991; pp. 761–764. [Google Scholar]
- Santosh, M.; Behera, K.C.; Bose, S.C. Design of an on chip read-out circuit for piezo-resistive MEMS pressure sensor. In Proceedings of the 2012 International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 15–16 March 2012; pp. 94–98. [Google Scholar]
- Kim, J.; Lee, H.; Cha, S.; Choi, B. Fabrication and evaluation of implantable pressure sensor using strain gauge. In Proceedings of the 5th 2012 Biomedical Engineering International Conference, Ubon Ratchathani, Thailand, 5–7 December 2012; pp. 1–4. [Google Scholar]
- Sathyanarayanan, S.; Juliet, A.V. Design and simulation of touch mode MEMS capacitive pressure sensor. In Proceedings of the 2010 International Conference on Mechanical and Electrical Technology, Singapore, 10–12 September 2010; pp. 180–183. [Google Scholar]
- Chang, S.-P.; Allen, M.G. Capacitive pressure sensors with stainless steel diaphragm and substrate. J. Micromech. Microeng. 2004, 14, 612. [Google Scholar] [CrossRef]
- Zhou, M.-X.; Huang, Q.-A.; Qin, M.; Zhou, W. A novel capacitive pressure sensor based on sandwich structures. J. Micromech. Syst. 2005, 14, 1272–1282. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, X.; Zhan, Z.; Xu, B.; Lv, W.; Wang, L.; Sun, D. Design and simulation of fully-symmetrical resonant pressure sensor. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; pp. 702–707. [Google Scholar]
- Ahmad, H.; Chong, W.Y.; Thambiratnam, K.; Zulklifi, M.Z.; Poopalan, P.; Thant, M.M.M.; Harun, S.W. High Sensitivity Fiber Bragg Grating Pressure Sensor Using Thin Metal Diaphragm. IEEE Sens. J. 2009, 9, 1654–1659. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit Konstanten Laschenquerschnitten. Luftfahrtfor Schung 1938, 15, 41–47. [Google Scholar]
- Goland, M. The Stresses in Cemented Joints. J. Appl. Mech. Trans ASME 1944, 66, 17–27. [Google Scholar]
Sensor Type | Sensing Mechanism | Load Range | References |
---|---|---|---|
| Resistive | 0–80 KPa | [27] |
20–200 KPa | [28] | ||
0–50 MPa | [29] | ||
0–100 KPa | [30] | ||
| 103.4 KPa–34.5 MPa | [31] | |
| 0–13.8 MPa | [32] | |
0–137.9 KPa | [33] | ||
| 0–10 KPa | [34] | |
| Capacitive | 0–10 MPa | [35] |
0–178 KPa | [36] | ||
80–106 KPa | [37] | ||
| Resonant | 0–550 KPa | [38] |
| Optical | 0–689.5 KPa | [39] |
Components | Dimensions, mm | Material Properties |
---|---|---|
Silicon chip | 7 × 7 × 0.3 | C11 = 165.7 GPa C12 = 63.9 GPa C44 = 79.6 GPa |
ACA | 7 × 7 × 0.07 | E = 3.3 GPa, ν = 0.3 |
PCB | 180 × 22.73 × 1.57 | E = 23.73 GPa, ν = 0.117 |
Gold Bumps | Φ 0.35 × 0.07 | E = 77.2 GPa, ν = 0.3 |
Stress Transmission Element | 7 × 7 × 2 | E = 200 GPa, ν = 0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, L. Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors 2018, 18, 3737. https://doi.org/10.3390/s18113737
Zhang Y, Li L. Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors. 2018; 18(11):3737. https://doi.org/10.3390/s18113737
Chicago/Turabian StyleZhang, Yi, and Lin Li. 2018. "Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors" Sensors 18, no. 11: 3737. https://doi.org/10.3390/s18113737
APA StyleZhang, Y., & Li, L. (2018). Modelling and Design of MEMS Piezoresistive Out-of-Plane Shear and Normal Stress Sensors. Sensors, 18(11), 3737. https://doi.org/10.3390/s18113737