Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode
Abstract
1. Introduction
2. Materials and Methods
2.1. TiO2 Synthesis
2.2. Characterization
2.3. Photoelectrochemical Tests
3. Results and Discussion
3.1. Synthesis and Characterisation
3.2. Electrochemical Behaviour
3.3. Photo-Electrochemical Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Holze, R.; Eftekhari, A. Nanostructured materials in electrochemistry. J. Solid State Electrochem. 2009, 13, 1621–1622. [Google Scholar] [CrossRef]
- Si, B.; Song, E. Recent Advances in the Detection of Neurotransmitters. Chemosensors 2018, 6, 1. [Google Scholar] [CrossRef]
- Lavanya, N.; Leonardi, S.G.; Sekar, C.; Ficarra, S.; Galtieri, A.; Tellone, E.; Neri, G. Detection of Catecholamine Neurotransmitters by Nanostructured SnO2-Based Electrochemical Sensors: A Review of Recent Progress. Mini Rev. Org. Chem. 2018, 15, 382–388. [Google Scholar] [CrossRef]
- Venton, B.J.; Wightman, R.M. Psychoanalytical electrochemistry: Dopamine and behaviour. Anal. Chem. 2003, 75, 414 A–421A. [Google Scholar] [CrossRef]
- Jiao, S.; Li, M.; Wang, C.; Chen, D.; Fang, B. Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA. Electrochim. Acta 2007, 52, 5939–5944. [Google Scholar] [CrossRef]
- Fazio, E.; Spadaro, S.; Bonsignore, M.; Lavanya, N.; Sekar, C.; Leonardi, S.G.; Neri, G.; Neri, F. Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine. J. Electroanal. Chem. 2018, 814, 91–96. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Tsai, T.H.; Chen, S.M. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2009, 24, 2712–2715. [Google Scholar] [CrossRef] [PubMed]
- Peltola, E.; Sainio, S.; Holt, K.B.; Palomäki, T.; Koskinen, J.; Laurila, T. Electrochemical fouling of dopamine and recovery of carbon electrodes. Anal. Chem. 2018, 90, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Soliveri, G.; Pifferi, V.; Panzarasa, G.; Ardizzone, S.; Cappelletti, G.; Meroni, D.; Sparnacci, K.; Falciola, L. Self-cleaning properties in engineered sensors for dopamine electroanalytical detection. Analyst 2015, 140, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Su, Y.; Li, L.; Liu, R.; Lv, Y. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sens. Actuators B Chem. 2017, 246, 380–388. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Q.; Du, X.; Qian, J.; Mao, H.; Wang, K. Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal. Chim. Acta 2015, 853, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, Y.; Li, J.; Da, P.; Geng, J.; Zheng, G. Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J. Mater. Chem. A 2014, 2, 6153–6157. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Z.; Wu, W.; Fu, B.; Wu, H.; Zhang, Z. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ma, H.; Yang, J.; Wu, D.; Zhang, Y.; Du, B.; Fan, D.; Wei, Q. Anatase TiO2 based photoelectrochemical sensor for the sensitive determination of dopamine under visible light irradiation. New J. Chem. 2015, 39, 1483–1487. [Google Scholar] [CrossRef]
- Yotsumoto Neto, S.; Silva Luz, R.; Santos Damos, F. Photoelectroanalytical sensor based on TiO2 nanoparticles/copper tetrasulfonated phthalocyanine for detection of dopamine exploiting light emitting diode irradiation. Electroanalysis 2016, 28, 2087–2092. [Google Scholar] [CrossRef]
- Zhai, C.; Zhu, M.; Ren, F.; Yao, Z.; Du, Y.; Yang, P. Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. J. Hazard Mater. 2013, 263, 291–298. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, X.; Xiong, Y.; Zhu, X.; Liu, S. The enhanced PC and PEC oxidation of formic acid in aqueous solution using a Cu-TiO2/ITO film. Chemosphere 2005, 58, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Kafi, A.K.M.; Wu, G.; Chen, A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 2008, 24, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth Anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465. [Google Scholar] [CrossRef] [PubMed]
- Ampelli, C.; Tavella, F.; Perathoner, S.; Centi, G. Engineering of photoanodes based on ordered TiO2-nanotube arrays in solar photo-electrocatalytic (PECa) cells. Chem. Eng. J. 2017, 320, 352–362. [Google Scholar] [CrossRef]
- Zhao, R.; Xu, M.; Wang, J.; Chen, G. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim. Acta 2010, 55, 5647–5651. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 2016, 42, 1–17. [Google Scholar] [CrossRef]
- Ojani, R.; Safshekan, S.; Raoof, J.-B. Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode: Its application for detection of hydrazine. J. Solid State Electrochem. 2014, 18, 779–783. [Google Scholar] [CrossRef]
- Ampelli, C.; Tavella, F.; Genovese, C.; Perathoner, S.; Favaro, M.; Centi, G. Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells. J. Energy Chem. 2017, 26, 284–294. [Google Scholar] [CrossRef]
- Passalacqua, R.; Ampelli, C.; Perathoner, S.; Centi, G. Anodically Formed TiO2 Thin Films: Evidence for a Multiparameter Dependent Photocurrent-Structure Relationship. Nanosci. Nanotechnol. Lett. 2012, 4, 142–148. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.-L.; Wang, A.-J.; Wang, Y. Probing photon localization effect between titania and photonic crystals on enhanced photocatalytic activity of titania film. Chem. Eng. J. 2016, 284, 305–314. [Google Scholar] [CrossRef]
- Ampelli, C.; Passalacqua, R.; Perathoner, S.; Centi, G.; Su, D.S.; Weinberg, G. Synthesis of TiO2 Thin Films: Relationship between Preparation Conditions and Nanostructure. Top. Catal. 2008, 50, 133–144. [Google Scholar] [CrossRef]
- Baez, V.B.; Pletcher, D. Preparation and characterization of carbon/titanium dioxide surfaces—The reduction of oxygen. J. Electroanal. Chem. 1995, 382, 59–64. [Google Scholar] [CrossRef]
- Lezana, N.; Fernández-Vidal, F.; Berríos, C.; Garrido-Ramírez, E. Electrochemical and photo-electrochemical processes of methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane. J. Chil. Chem. Soc. 2017, 62, 3529–3534. [Google Scholar] [CrossRef]
- Ivanov, S.; Mintsouli, I.; Georgieva, J.; Armyanov, S.; Valova, E.; Kokkinidis, G.; Sotiropoulos, S. Platinized titanium dioxide electrodes for methanol oxidation and photo-oxidation. J. Electrochem. Sci. Eng. 2012, 2, 155–169. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Z.; Wu, W.; Fu, B.; Wub, H.; Zhang, Z. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Wei Lai, C.; Sreekantan, S. The Photoelectrochemical Response of Various Surface Morphologies of Titanium Anodic Oxide Films. J. Eng. Sci. 2013, 9, 21–30. [Google Scholar]
- Cai, Z.; Rong, M.; Zhao, T.; Zhao, L.; Wang, Y.; Chen, X. Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J. Electroanal. Chem. 2015, 759, 32–37. [Google Scholar] [CrossRef]
Electrode | Range (μM) | Light Source | Sensitivity (nA μM−1 cm−2) | Electrode Area (cm2) | Detection Limit (μM) | Ref. |
---|---|---|---|---|---|---|
Graphene–TiO2 | 0.02–105 | 250 W Xe lamp | 2140 | 0.07 | 0.006 | [13] |
TiO2 NTs | 0.001–25 | 300 W Xe lamp | 1340 | -- | 0.00015 | [15] |
TiO2 NPs | 5–200 | 30 W LED | 0.013 | 2.4 | 2 | [16] |
CuTsPc/TiO2 | 4–810 | 20 W LED | 3.7 | 0.8 | 0.5 | [17] |
Graphene-C3N4/TiO2 | 0.1–50 | 150 W Xe lamp | 210 (nA/μM) | -- | 0.02 | [35] |
TiO2 nanopore array | 200–1500 | 120 mW LED | 0.462 | 0.125 | 20 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavella, F.; Ampelli, C.; Leonardi, S.G.; Neri, G. Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors 2018, 18, 3566. https://doi.org/10.3390/s18103566
Tavella F, Ampelli C, Leonardi SG, Neri G. Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors. 2018; 18(10):3566. https://doi.org/10.3390/s18103566
Chicago/Turabian StyleTavella, Francesco, Claudio Ampelli, Salvatore Gianluca Leonardi, and Giovanni Neri. 2018. "Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode" Sensors 18, no. 10: 3566. https://doi.org/10.3390/s18103566
APA StyleTavella, F., Ampelli, C., Leonardi, S. G., & Neri, G. (2018). Photo-Electrochemical Sensing of Dopamine by a Novel Porous TiO2 Array-Modified Screen-Printed Ti Electrode. Sensors, 18(10), 3566. https://doi.org/10.3390/s18103566