A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation
Abstract
:1. Introduction
2. Models of Noisy Signal
3. The Proposed Method
3.1. Block Similarity Measure
3.2. Weighted Group Low-Rank Representation Model
3.3. Boosting of the Image Denoising Method
Algorithm 1: The proposed SAR image despeckling method. |
the noisy SAR image , the parameter l = 1:T Iterative regularization each patch in Group data matrix Despeckle via WGLRR Obtain the denoised version Aggregate to form the clean image Clean image |
Algorithm 2: WGLRR. |
Group data matrix Update using Equation (25) Update using Equation (26) Update using Equation (28) Update using Equation (29) |
4. Experimental Results and Analysis
4.1. Results with Simulated Images
4.2. Results with Actual Synthetic Aperture Radar Images
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef]
- Lee, J.S. Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 1981, 17, 24–32. [Google Scholar] [CrossRef]
- Lee, J.S. Speckle Suppression and Analysis for Synthetic Aperture Radar Images. Opt. Eng. 1986, 25, 636–643. [Google Scholar] [CrossRef]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–166. [Google Scholar] [CrossRef]
- Shi, J.; Osher, S. A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model. Siam J. Imaging Sci. 2008, 1, 294–321. [Google Scholar] [CrossRef] [Green Version]
- Denis, L.; Tupin, F.; Darbon, J.; Sigelle, M. SAR image regularization with fast approximate discrete minimization. IEEE Trans. Image Process. 2009, 18, 1588. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, L.; Jouan, A. Speckle filtering of SAR images: A comparative study between complex-wavelet-based and standard filters. Proc. SPIE Int. Soc. Opt. Eng. 1997, 3169, 80–91. [Google Scholar] [CrossRef]
- Hervet, E.; Fjortoft, R.; Marthon, P.; Lopes, A. Comparison of wavelet-based and statistical speckle filters. Remote Sens. 1998, 3497, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Argenti, F.; Alparone, L. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2363–2374. [Google Scholar] [CrossRef]
- Ranjani, J.J.; Thiruvengadam, S.J. Dual-Tree Complex Wavelet Transform Based SAR Despeckling Using Interscale Dependence. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2723–2731. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Shu, Y.; Peng, J. SAR Image Denoising via Clustering-Based Principal Component Analysis. IEEE Transa. Geosci. Remote Sens. 2014, 52, 6858–6869. [Google Scholar] [CrossRef]
- Wang, B.H.; Zhao, C.Y.; Liu, Y.Y. An improved SAR interferogram denoising method based on principal component analysis and the Goldstein filter. Remote Sens. Lett. 2018, 9, 81–90. [Google Scholar] [CrossRef]
- Foucher, S. SAR Image Filtering Via Learned Dictionaries and Sparse Representations. Int. Geosci. Remote Sens. Sympos. 2008, 1, I229–I232. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, L.; Sang, N. Non-local sparse models for SAR image despeckling. In Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing, Xiamen, China, 16–18 December 2012; pp. 230–236. [Google Scholar] [CrossRef]
- Michal, A.; Michael, E.; Alfred, B. The K-SVD: An algorithm for designing of overcomplete 314 dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Achim, A.; Tsakalides, P.; Bezerianos, A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1773–1784. [Google Scholar] [CrossRef] [Green Version]
- Solbø, S.; Eltoft, T. Homomorphic wavelet-based statistical despeckling of SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 711–721. [Google Scholar] [CrossRef]
- Bhuiyan, M.I.H.; Ahmad, M.O.; Swamy, M.N.S. Spatially Adaptive Wavelet-Based Method Using the Cauchy Prior for Denoising the SAR Images. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 500–507. [Google Scholar] [CrossRef]
- Foucher, S.; Bénié, G.B.; Boucher, J.-M. Multiscale MAP filtering of SAR images. IEEE Trans. Image Process. 2001, 10, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argenti, F.; Bianchi, T.; Alparone, L. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling. IEEE Trans. Image Process. 2006, 15, 3385–3399. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, T.; Argenti, F.; Alparone, L. Segmentation-Based MAP Despeckling of SAR Images in the Undecimated Wavelet Domain. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2728–2742. [Google Scholar] [CrossRef]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Cozzolino, D.; Parrilli, S.; Scarpa, G.; Poggi, G.; Verdoliva, L. Fast Adaptive Nonlocal SAR Despeckling. IEEE Geosci. Remote Sens. Lett. 2014, 11, 524–528. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. NL-SAR: A Unified Non-Local Framework for Resolution-Preserving (Pol)(In)SAR denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Fu, H.; Liu, S.; Liu, G.; Cao, X. Low-Rank Tensor Constrained Multiview Subspace Clustering. Proc. IEEE Int. Conf. Comput. Vis. 2015, 1582–1590. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral Image Restoration Using Low-Rank Matrix Recovery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4729–4743. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Peng, X.; Do, M.N.; Liang, Z.P. Denoising MR Spectroscopic Imaging Data With Low-Rank Approximations. IEEE Trans. Biomed. Eng. 2013, 60, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Cao, L.; Chen, J.; Zheng, X. Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Phys. Lett. 2017, 14, 056002. [Google Scholar] [CrossRef]
- Fang, J.; Liu, S.; Xiao, Y.; Li, H. SAR image de-noising based on texture strength and weighted nuclear norm minimization. J. Syst. Eng. Electron. 2016, 27, 807–814. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Ji, K.; Song, H.; Zou, H. SAR image despeckling by iterative non-local low-rank constraint. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 3564–93568. [Google Scholar] [CrossRef]
- Chen, G.; Li, G.; Liu, Y.; Zhang, X.P.; Zhang, L. SAR image despeckling by combination of fractional-order total variation and nonlocal low rank regularization. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3210–3214. [Google Scholar] [CrossRef]
- Romano, Y.; Elad, M. Boosting of Image Denoising Algorithms. SIAM J. Imaging Sci. 2015, 8, 1187–1219. [Google Scholar] [CrossRef] [Green Version]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Stevenage, UK, 1998. [Google Scholar]
- Xu, B.; Cui, Y.; Li, Z.; Zuo, B.; Yang, J.; Song, J. Patch Ordering-Based SAR Image Despeckling Via Transform-Domain Filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1682–1695. [Google Scholar] [CrossRef]
- Garnett, R.; Huegerich, T.; Chui, C.; He, W. A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 2005, 14, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Liu, R.; Su, Z. Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011; MIT Press Ltd.: Cambridge, MA, USA, 2011; pp. 612–620. [Google Scholar]
- Cai, J.F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. Siam J. Opt. 2010, 20, 1956–1982. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, G.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking Framework for SAR Despeckling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1596–1615. [Google Scholar] [CrossRef]
L = 1 | L = 2 | L = 4 | L = 8 | L = 16 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Noisy | 11.72 | 0.1680 | 14.49 | 0.2556 | 17.40 | 0.3598 | 20.38 | 0.4743 | 23.37 | 0.5917 |
Frost | 17.68 | 0.5891 | 20.53 | 0.6274 | 24.45 | 0.6990 | 25.89 | 0.7241 | 26.98 | 0.7829 |
WGLRR | 19.89 | 0.6215 | 22.78 | 0.6565 | 27.79 | 0.7287 | 28.03 | 0.7811 | 30.96 | 0.8305 |
BWNNM | 19.87 | 0.6220 | 26.80 | 0.6590 | 28.81 | 0.7302 | 28.89 | 0.7976 | 30.98 | 0.8590 |
K-SVD | 23.08 | 0.6341 | 29.21 | 0.6870 | 31.76 | 0.7450 | 34.08 | 0.8077 | 34.01 | 0.8721 |
FANS | 20.02 | 0.7565 | 28.90 | 0.7981 | 29.98 | 0.8341 | 30.02 | 0.8672 | 32.87 | 0.9061 |
Proposed method | 20.04 | 0.7587 | 28.92 | 0.7992 | 30.06 | 0.8451 | 33.21 | 0.8892 | 33.90 | 0.9221 |
ENL | Cx | ES | Cbg | |
---|---|---|---|---|
Homogeneous | DEM | Squares | Corner | |
Noisy | 1.0 | 3.54 | 0.029 | 36.50 |
Frost | 17.8 | 1.98 | 0.138 | 36.41 |
WGLRR | 200.3 | 1.82 | 0.201 | 30.62 |
BWNNM | 123.8 | 2.03 | 0.278 | 32.80 |
K-SVD | 231.7 | 2.09 | 0.231 | 33.89 |
FANS | 161.1 | 2.55 | 0.155 | 35.50 |
Proposed method | 180.6 | 2.23 | 0.189 | 35.65 |
MR | CB | |||
---|---|---|---|---|
ENL | Time (s) | ENL | Time (s) | |
Noisy | 3.01 | —- | 2.99 | —- |
Frost | 7.98 | 80.31 | 8.02 | 76.18 |
WGLRR | 101.6 | 160.1314 | 235.2 | 158.9082 |
BWNNM | 87.9 | 156.7239 | 92.6 | 148.0935 |
K-SVD | 100.3 | 280.4576 | 250.9 | 340.9642 |
FANS | 20.5 | 135.4590 | 36.3 | 132.5261 |
Proposed method | 39.2 | 207.8261 | 63.6 | 198.9801 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Hu, S.; Ma, X. A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation. Sensors 2018, 18, 3448. https://doi.org/10.3390/s18103448
Fang J, Hu S, Ma X. A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation. Sensors. 2018; 18(10):3448. https://doi.org/10.3390/s18103448
Chicago/Turabian StyleFang, Jing, Shaohai Hu, and Xiaole Ma. 2018. "A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation" Sensors 18, no. 10: 3448. https://doi.org/10.3390/s18103448
APA StyleFang, J., Hu, S., & Ma, X. (2018). A Boosting SAR Image Despeckling Method Based on Non-Local Weighted Group Low-Rank Representation. Sensors, 18(10), 3448. https://doi.org/10.3390/s18103448