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Abstract: In this paper, we propose a boosting synthetic aperture radar (SAR) image despeckling
method based on non-local weighted group low-rank representation (WGLRR). The spatial structure
information of SAR images leads to the similarity of the patches. Furthermore, the data matrix
grouped by the similar patches within the noise-free SAR image is often low-rank. Based on this,
we use low-rank representation (LRR) to recover the noise-free group data matrix. To maintain the
fidelity of the recovered image, we integrate the corrupted probability of each pixel into the group
LRR model as a weight to constrain the fidelity of recovered noise-free patches. Each single patch
might belong to several groups, so different estimations of each patch are aggregated with a weighted
averaging procedure. The residual image contains signal leftovers due to the imperfect denoising,
so we strengthen the signal by leveraging on the availability of the denoised image to suppress noise
further. Experimental results on simulated and actual SAR images show the superior performance of
the proposed method in terms of objective indicators and of perceived image quality.

Keywords: synthetic aperture radar; low-rank representation; non-local; speckle noise
reduction; boosting

1. Introduction

Synthetic aperture radar (SAR) remote sensing has been extensively applied in military and
civil fields because of the all-day, all-weather acquisition capability. However, being acquired via
coherent imaging, the SAR images are intrinsically associated with a signal-dependent granular noise
called speckle [1]. The existence of speckle degrades the appearance of images which may affect the
performance in many applications such as target detection, terrain classification, etc. Thus, despeckling
is an important preprocessing step for a number of applications [1]. Such preprocessing, however,
should be carefully designed to suppress most of the speckle in homogeneous regions and preserve
textures and region boundaries, while avoiding the introduction of filtering artifacts.

Early works on despeckling were performed in the spatial domain. The Lee filter [2] is reportedly
the first model-based despeckling filter. It is thoroughly developed in [3] and reviewed in [4] together
with the sigma filter. The Lee refined filter [5] uses the local gradient to estimate the orientation of the
edge boundaries which is noisy in the Lee filter. The Frost filter [6] starts from a model of the coherent
imaging system and constructs an auto-correlation function from local statistics. The noise-free image
can be estimated by solving the function with the linear minimum mean square error (LMMSE)
estimator. Different filter sizes greatly affect the quality of the estimated images. Although classical
spatial filters can realize the result of speckle removal, they can lead to blurring effects and defects
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in detail preservation, which has a bad influence on the subsequent image processing. As a popular
denoising method, total variation (TV) regularization is used in the multiplicative noise by some
scholars [7,8]. In such a method, denoising is achieved by the minimization of a cost function based
on the intensity or the logarithm of the intensity. However, many methods have been validated on
simulated data and less used in actual SAR images [1].

Filtering in the transform domain has been extensively used during the last twenty years, such as
wavelet transform [9–12], principal component analysis [13,14] and sparse representation [15–17].
Wavelet shrinkage can be readily applied to SAR despeckling after a homomorphic transformation.
Each wavelet subband is associated to a speckle contribution that may be exactly measured. Classical
hard-thresholding and soft-thresholding methods are applied in [9,10], respectively. Some scholars [18–20]
have performed a statistical Bayesian estimation to optimize the shrinkage parameter. In [21],
undecimated wavelet and Maximum A Posteriori (MAP) estimation are used for despeckling.
Argenti [22] and Bianchi [23] extended the despeckling to the nonsubsampled contourlet transform
domain. However, the decomposition of subbands in the transform domain may cause unwanted
artifacts. Nonlocal (NL) filtering has been successfully applied to SAR images denoising in the wavelet
domain [24–26]. NL filtering is applied by substituting the Euclidean distance with a probabilistic
measure according to the pdf of SAR data, which provided us with the new research direction.

Recently, low-rank representation (LRR) has been extensively used in image processing [27,28]
and image restoration [29–31]. Meanwhile, the similarity of the ground objects leads to LRR of SAR
images [32–34]. Considering the severe speckle noise in SAR images, it is a challenge to decompose
the corrupted matrix into a noise matrix and a low-rank matrix of the noise-free image. In this paper,
we propose a boosting SAR image despeckling method based on non-local weighted group low-rank
representation (WGLRR). By logarithmic transformation, the multiplicative noise becomes additive.
Grouping the similar patches by an ad hoc measure to form groups of similar image blocks, we use the
low rank representation model for speckle noise reduction of the similar image blocks. To ensure the
fidelity of the recovered image, the corrupted probability of each pixel is added to the LRR model as a
weight to regularize the reconstruction error term. Each single patch may belong to several groups, so
we aggregate the different estimates by different weights depending on the rank of each group data
matrix to obtain the denoised result. To suppress the speckle further and improve the despeckling
SAR image, one boosting recursive method [35] is finally adopted.

The rest of the paper is organized as follows. In Section 2, we present the model of the noisy
signal. Then, in Section 3, starting from the logarithmic model, the proposed method is rigorously
described. The compared experiments on simulated and real SAR images are conducted in Section 4.
Finally, Section 5 concludes this paper.

2. Models of Noisy Signal

Despeckling filters aim at estimating the noise-free radar reflectivity from the observed noisy
SAR images under a statistical signal processing perspective. Under the hypothesis of fully developed
speckle, the observed backscattered signal can be expressed as [36]:

z = xu (1)

where x is a possibly auto-correlated random process and represents the noise-free reflectivity; u is
a possibly auto-correlated stationary random process, independent of x, representing the speckle
fading term; and z is the observed noisy image. All the quantities in Equation (1) may refer to either
intensity or amplitude as well as to single-look or multi-look images. It is well established that the
fully developed speckle follows the Gamma distribution [36]

pv(u) =
LLuL−1

Γ(L)
exp(−uL), u ≥ 0 (2)
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where L is the equivalent number of looks (ENL) and Γ() is the Gamma function. Taking the logarithm
of the observed data, we have

ln(z) = ln(x) + ln(u) (3)

where ln(u) is a signal-independent additive noise. The mean and variance of ln(u) are related to
the ENL.

E[ln(u)] = ψ(0)(L)− ln(L) (4)

var[ln(u)] = ψ(1)(L) (5)

where ψ(m)(L) is the polygamma function of order m. Since an unbiased estimation in the log-domain
is mapped onto a biased estimation in the spatial domain, we perform the bias correction [37] to
Equation (3),

z(ln) = ln(z)− ψ(0)(L) + ln(L) (6)

The following filtering process will work on the bias-corrected log-intensity data.

3. The Proposed Method

3.1. Block Similarity Measure

For ease of presentation, let Y denote the bias-corrected log-intensity data defined as

Y = X + E (7)

where X is the noise-free matrix, and E is the noise matrix.
Suppose that the size of X is N1 × N2. We extract sliding patches of size

√
M×

√
M from X. The

number of patches is

N =

(⌈
N1 −

√
M

SL(p)

⌉
+ 1

)(⌈
N2 −

√
M

SL(p)

⌉
+ 1

)
(8)

where SL(p) is the step length. Let yi = [y1, y2, · · · , yM]T be the column stacked version of these

patches. All of the patches form a data matrix
∧
Y = (y1, y2, · · · , yN) ∈ <M×N . It is well known

that self-similarity is abundant in SAR images. For a given reference patch yi, we use the block
similarity measure (BSM) instead of the Euclidean distance as the similarity measurement which
is more appropriate for SAR images. Inspired by the literature [24], we define the block similarity
measure as

d
[
yi, yj

]
= −ln{∏

n
p[y(i + n), y(j + n)]|x(i + n) = x(j + n)} (9)

where p(·) indicates a probability density function. Since, for an L-look amplitude, SAR image speckle
can be modeled by a square root gamma distribution with order L, Equation (9) can be expressed as

d
[
yi, yj

]
= −ln{∏

n
4L

Γ(2L− 1)
Γ2(L)

×
[

y(i + n)y(j + n)
y2(i + n) + y2(j + n)

]2L−1

} (10)

where L is the equivalent number of looks and Γ() is the Gamma function. According to the properties
of logarithmic operation, Equation (10) can be expressed as
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d
[
yi, yj

]
= −ln

[
4L Γ(2L−1)

Γ2(L)

]
−∑

n
ln
[

y(i+n)y(j+n)
y2(i+n)+y2(j+n)

]2L−1

= −ln
[
4L Γ(2L−1)

Γ2(L)

]
+ (2L− 1)∑

n
ln
[

y(i+n)
y(j+n) +

y(j+n)
y(i+n)

] (11)

The first item is a constant, so the BSM can be approximated as

d
[
yi, yj

]
= (2L− 1)∑

n
ln
[

y(i + n)
y(j + n)

+
y(j + n)
y(i + n)

]
(12)

The smaller the d-distance is, the more similar yi and yj are. Grouping the pixels with similar
local spatial structures in the local window, we can obtain the data matrix

Yi =
(
yi, yi,1,yi,2, · · · ,yi,p

)
∈ <M×(p+1) (13)

where p ≤ N. Additionally, there are p-most similar patches of yi.
Considering the added model of Equation (7), we have

Yi = Xi + Ei (14)

where Xi is the noise-free group matrix and Ei is the noise matrix.

3.2. Weighted Group Low-Rank Representation Model

A conventional low-rank representation approach to recover the noise-free matrix from
Equation (14) is to solve the following optimization problem

X̂i = min
Xi

rank(Xi) + λ ‖Ei‖2
F , s.t. Yi = Xi + Ei (15)

where λ is a parameter whose value is more than zero. ‖·‖2
F indicates the squared Frobenius norm used

for modeling the noise. Considering that Equation (15) does not make full use of the spatial structure
information of the image, we improve the LRR model according to the statistics of SAR images.

The seriously corrupted pixels in SAR images will vary greatly in intensity from most or all of
their neighboring pixels which is similar to impulse noise. Thus, we use the local image rank-ordered
absolute differences (ROAD) statistic [38] to identify the speckle noisy pixels from a noisy image.

Let u = (u1, u2) be the location of the pixel under consideration. The set of points in a 3× 3
neighborhood centered at u is denoted as

Ωu := {u + (i, j) : −1 ≤ i, j ≤ 1} (16)

For each point r ∈ Ωu, the absolute difference of the pixels between qu and qv is defined as

du,v = |qu − qv| (17)

We sort all the absolute difference and select the mth smallest one of du,v denoted as dm. Then, the
ROAD of pixel qu is defined as

ROADs(qu) =
s

∑
m=1

dm (18)

where 2 ≤ s ≤ 7. In this paper, we set s = 4. That is, we measure how close the qu is to its four most
similar neighbors by the ROAD4(qu). Ideally, we want the ROAD to be very high for speckle noise
pixels while much lower for uncorrupted pixels. For illustrative purposes, we choose an aerial photo
of the city of Naples [25] which shows a better similarity to SAR images in terms of scene structure.
Figure 1 shows the original Naples image and the noisy image corrupted by one-look speckle. Figure 2
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shows examples from the tested image comparing the enlarged noisy pixels to the original pixels which
are marked by the red rectangle. Despite the enlarged area being part of an edge, it has neighbors of
similar intensity which leads to a significantly lower ROAD value.

(a) (b)

Figure 1. Naples image: (a) original image; and (b) noisy image corrupted by one-look speckle.

(a) (b)

Figure 2. Zoom of a red rectangle area in Figure 1: (a) original image; and (b) noisy image corrupted
by one-look speckle.

For example, we select a typical edge pixel with coordinate (50,166) in the red rectangle area.
Then, the original neighborhood is shown as: 156 227 233

56 116 198
65 62 65


The absolute difference can be calculated as:
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 40 111 117
60 − 82
51 54 51


Selecting the four smallest absolute difference, the ROAD can be denoted as:

ROADoriginal =
4
∑

i=1
ri = 40 + 51 ++51 + 54 = 196

Similarly, the ROAD with the same coordinate in the noisy image can be calculated as:

ROADnoisy =
4
∑

i=1
ri = 21.1774 + 59.1651 + 114.9567 + 160.0594 = 355.3586

From the example above, we can see that the noise pixels often have much higher mean ROAD
values than the uncorrupted pixels.

After calculating the ROAD of pixel qu, we can express the final corrupted probability as

pu = 1− exp(−0.01 · ROAD(qu)) (19)

Aggregating all the corrupted probability of each pixel, we can obtain the low-rank
representation model:

X̂i = min
Xi

rank(Xi) + λ ‖Ei‖2
F , s.t. Pi ◦ Yi = Pi ◦ Xi + Ei (20)

where Pi is composed of all the corrupted probability of pixels in the data matrix Yi and “◦” denotes
multiplying the two matrices element-by-element. The constraints ensure a smaller error to the pixel
with smaller corrupted probability which can better preserve the fidelity of the real noise-free image.

Solving the above optimization problem is not an easy work because of the discrete nature of the
rank function. Wright et al. showed that we can recover the low-rank matrix by solving the following
convex optimization problem [27]:

X̂i = min
Xi
‖Xi‖∗ + λ ‖Ei‖2

F , s.t. Pi ◦ Yi = Pi ◦ Xi + Ei (21)

where ‖·‖∗ denotes the nuclear norm of a matrix which can be calculated by the sum of its singular
values. The recovery of matrix Xi can be carried out by the augmented Lagrange multipliers (ALM) [39]:

L(Xi, Ei, Ri, β) = ‖Xi‖∗ + λ ‖Ei‖2
F + 〈Ri, Pi ◦ Yi − (Pi ◦ Xi + Ei)〉+

β
2 ‖Pi ◦ Yi − (Pi ◦ Xi + Ei)‖2

F

= ‖Xi‖∗ + λ ‖Ei‖2
F + β

2

∥∥∥Pi ◦ Yi − (Pi ◦ Xi + Ei) +
Ri
β

∥∥∥2

F
− 1

2β ‖Ri‖2
F

(22)

where β is a positive scalar so that the objective function is only perturbed slightly and Ri is a Lagrange
multiplier which is used to remove the equality constraint. 〈 · , ·〉 is the inner product.

Usually, it is difficult to minimize L(Xi, Ei, Ri, β) with respect to Xi and Ei simultaneously, so we
resolve this problem by decomposing the minimization of Equation (22) into two subproblems.

Xk+1
i = arg min

Xi
L(Xi, Ek

i , Rk
i , β) (23)

Ek+1
i = arg min

Ei
L(Xk+1

i , Ei, Rk
i , β) (24)

The subproblem in Equation (23) is equivalent to

Xk+1
i = arg min

Xi
‖Xi‖∗ +

βk

2

∥∥∥∥∥Pi ◦ Yi − (Pi ◦ Xi + Ek
i ) +

Rk
i

βk

∥∥∥∥∥
2

F

(25)
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Similarly, the subproblem in Equation (24) can be approximated as

Ek+1
i = arg min

Ei
λ ‖Ei‖2

F +
βk

2

∥∥∥∥Pi ◦ Yi − (Pi ◦ Xi + Ek
i ) +

Rk
i

βk

∥∥∥∥2

F

= arg min
Ei

λTr(ET
i Ei) +

βk

2 Tr(QTQ)
(26)

where Q = Pi ◦ Yi − (Pi ◦ Xi + Ek
i ) +

Rk
i

βk . Equation (25) can be resolved by the linearized alternating
direction method with an adaptive penalty [29] and a singular value thresholding operator [40], which
have proven to be convergent. Taking the derivative of Equation (26) with respect to Ei and setting it
to zero, we can obtain

Ek+1
i = Rk

i /(2λ + βk) (27)

When Xi and Ei are fixed, the update can be denoted:

Rk+1
i = Rk

i + βk(Pi ◦ Yk+1
i − (Pi ◦ Xk+1

i + Ek+1
i )) (28)

The penalty parameter β is updated by an adaptive strategy:

βk+1 = min(βmax, ρβk) (29)

where βmax is an upper bound of βk and ρ ≥ 1 is a constant. Equation (27) has a closed solution which
guarantees the convergence of the WGLRR method.

When we have estimated each group matrix with Equation (20) , the noise-free patches can be
obtained by rearranging column vectors of each recovered group matrix. Considering that we take the
p-most similar patches of yi to construct the group data matrix and each single patch might belong
to several groups, we aggregate different estimates of this patch to obtain the noise-free image by
a weighted averaging process. For the ith recovered group data matrix X̂i, the smaller the rank is,
the higher the degree of linear correlation the patches have. Thus, the estimation of pixels in this group
data matrix is better. We average different estimates of the pixel i with different weights to suppress
noise further.

xi =

∑
j

wjxi,j

∑
j

wj
(30)

where xi,j is the jth recovered version of the pixel i and wj is the rank-related weight of the jth group
matrix defined as

wj =

{
1− k

p+1 , k < p + 1
1

p+1 , k = p + 1
(31)

where k is the rank of the jth recovered group data matrix. The weighted averaging procedure ensures
that the better recovered results of a pixel in different groups will contribute more to the final denoised
version xi.

3.3. Boosting of the Image Denoising Method

Despite the effectiveness of the above denoising method, improved results can be obtained by
applying a boosting technique. On the one hand, signal leftovers and noise leftovers reside in the
residual image. On the other hand, the gap between the local patch-processing and the global need
for a whole restored image is a major shortcoming in the patch-based methods. Thus, we perform a
boosting strategy to improve the results which strengthens the signal by leveraging the availability
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of the denoised image. The improved denoising performance is gained by applying the WGLRR as a
black-box. The first step is to strengthen the signal by adding the previous denoised image to the noisy
input image. The second step is to operate the denoising method on the strengthened image. The third
step is to add the method noise and normalization. The procedure can be denoted by the core equation:

X̂l+1 =
1

1 + γ

[
f (Y + γX̂l) + (Y− f (Y))

]
(32)

where X̂0 = 0. The parameter γ controls the signal emphasis and a large value of γ implies a strong
emphasis of the underlying signal. Because the estimated part of the signal is emphasized, there is
no loss of signal content that has not been estimated correctly. The literature [35] has proven that the
signal strengthened image can be denoised more effectively compared to the noisy input image.

The whole denoising algorithm is summarized in Algorithm 1. The detail of WGLRR can be seen
in Algorithm 2.

Algorithm 1: The proposed SAR image despeckling method.
Input : the noisy SAR image Y, the parameter γ

Initialize X̂(0) = 0, Y(0) = Y
for l = 1:T do

Iterative regularization Y(l) = Y + γX̂(l−1)

for each patch yi in Y(l) do
Group data matrix Yi ∈ <M×(p+1)

Despeckle via WGLRR
Obtain the denoised version Xk+1

i
end for
Aggregate Xi to form the clean image X̂(l)

X̂l = (X̂l + (Y− f (Y))/(1 + γ)

end for
Output : Clean image X̂l

Algorithm 2: WGLRR.
Input : Group data matrix Yi

Initialize X0
i = 0, E0

i = 0, R0
i = 0, β0 = 0.1, βmax = 1010, λ = 0.1

Repeat
Update Xk+1

i using Equation (25)
Update Ek+1

i using Equation (26)
Update Rk+1

i using Equation (28)
Update βk+1 using Equation (29)
k = k + 1

end until convergence
Output : Xk+1

i

4. Experimental Results and Analysis

To demonstrate the efficiency of our method, we compare it with other state-of-the-art speckle
removal algorithms, such as the Frost filter (Frost) [6], the original non-local weighted group low-rank
representation (WGLRR) [31], the blind de-noising algorithm based on weighted nuclear norm
(BWNNM) [32], K-SVD [17] and the nonlocal fast adaptive nonlocal SAR de-noising (FANS) [25].
All experiments were carried out by Matlab (MathWorks, Natick, MA, USA) codes on Intel Core i5 3.1
GHz (Intel Corporation, Santa Clara, CA, USA) with 4 GB RAM. Due to the lack of an ideal noiseless
image, it is a challenge to make an objective assessment. From the literature review [14,15,25], we
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performed experiments on simulated images to analyze the objective assessment comparing with
different denoising methods. In Section 4.2, we discuss experiments with actual SAR images.

4.1. Results with Simulated Images

In this section, we multiply four optical images by simulated white speckle in amplitude format
with pdfs corresponding to the cases of 1, 2, 4, 8 and 16 looks. The original optical images are shown in
Figure 3. We evaluate and compare the different methods by two objective valuation index measures:
peak signal-to-noise-ratio (PSNR) and structural similarity (SSIM). PSNR can measure the intensity
difference between two images and SSIM can better reflect the structure similarity between the target
image and the reference image. PSNR can be formulated as follows.

PSNR = 10log10
|x|2max
MSE

(33)

where

MSE =

〈
[x(i)− ∧x(i)]

2
〉

(34)

and |x|max is the maximum value admitted by the data format. The mean-square error (MSE) is
computed as a spatial average 〈·〉, with x and x̂ being the original and denoised images, respectively.
SSIM can be calculated by Equation (35).

SSIM =
2(µiµj + C1)(2σij + C2)

(µ2
i + µ2

j + C1)(σ
2
i + σ2

j + C2)
(35)

where µ and σ2 denote the mean value and variance, respectively; i and j denote different areas; and
C1 and C2 are the constant with small value to ensure the denominator is not zero. We average the
values of PSNR and SSIM from the four test images and report the results of different methods in
Table 1. In Table 1, we can see that the Frost filter improves several decibels with respect to the noisy
images with different looks. However, the more sophisticated methods proposed recently have a
higher PSNR. The original WGLRR method is improved by about 2–4 dB compared to Frost, especially
in the case of L = 16. This is because, with the increase of the looks, the speckle model is similar to
obeying Gauss distribution which is more suitable for WGLRR. The K-SVD method obtains a higher
PSNR but lower SSIM. The proposed method achieves a PSNR gain of 1–3 dB compared to WGLRR
and BWNNM and is similar PSNR to FANS. Meanwhile, the SSIMs in the proposed method are
the closest to 1 which indicates that the denoised results by our method are the most similar to the
original images.

Due to the limitation of space, we only show the denoised images provided by all methods for
Hill with L = 4 in Figure 4. Figure 5 shows the zoom of the roof area in the Hill image. Although the
Frost filter can reduce the noise to some extent, the denoised image still has room for noise reduction.
Both the original WGLRR and BWNNM methods are verified for good superiority in terms of image
denoising at the cost of a certain amount of boundary blurring. The K-SVD method blurs the details
and has some artifacts. FANS and the proposed method can reduce the noise while reserving the
detail feature. In Figure 5, we can see that the roof tiles and the window become clearer with the
proposed method.

To gain better insight into the advantage of our method, Table 2 shows the objective indicators [41]
on the single-look SAR images of Figure 6, generated by physical-level simulation. In the homogeneous
region, ENL is computed to measure the speckle suppression of different methods. In the digital
elevation model (DEM), the coefficient of variation (Cx) accounts for the texture preservation. In the
squares, we use edge smearing (ES) to measure edge profile degradation. In the corner region, the
contrast to background (Cbg) accounts for the radiometric fidelity. In Table 2, we can see that the K-SVD
has the largest ENL, implying the strongest speckle suppression. FANS and our method guarantee a
better preservation of features in textured areas with Cx > 2.2. The best edge smearing is not to filter at
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all while our method has the same competitiveness as FANS. From the last column, we can see that
our method has higher Cbg than the other methods which shows a good radiometric accuracy.

Table 1. The average peak signal-to-noise-ratio (PSNR) (dB) and structural similarity (SSIM) results of
the denoised image by different methods.

L = 1 L = 2 L = 4 L = 8 L = 16

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 11.72 0.1680 14.49 0.2556 17.40 0.3598 20.38 0.4743 23.37 0.5917
Frost 17.68 0.5891 20.53 0.6274 24.45 0.6990 25.89 0.7241 26.98 0.7829

WGLRR 19.89 0.6215 22.78 0.6565 27.79 0.7287 28.03 0.7811 30.96 0.8305
BWNNM 19.87 0.6220 26.80 0.6590 28.81 0.7302 28.89 0.7976 30.98 0.8590
K-SVD 23.08 0.6341 29.21 0.6870 31.76 0.7450 34.08 0.8077 34.01 0.8721
FANS 20.02 0.7565 28.90 0.7981 29.98 0.8341 30.02 0.8672 32.87 0.9061

Proposed method 20.04 0.7587 28.92 0.7992 30.06 0.8451 33.21 0.8892 33.90 0.9221

(a) (b) (c) (d)

Figure 3. Test speckle free images: (a) Hill; (b) House; (c) Fingerprint; and (d) Peppers.

(a) (b) (c)

(d) (e) (f)

Figure 4. Filtered images for Hill corrupted by four-look speckle: (a) Frost; (b) WGLRR; (c) BWNNM;
(d) K-SVD; (e) FANS; and (f) the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Zoom of filtered images for Hill corrupted by four-look speckle: (a) Frost; (b) WGLRR;
(c) BWNNM; (d) K-SVD; (e) FANS; and (f) the proposed method.

(a) (b)

(c) (d)

Figure 6. Images of the benchmark: (a) Homogeneous; (b) DEM; (c) Squares; and (d) Corner.
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Table 2. The objective indicators of the single-look SAR images on the despeckling benchmark.

ENL Cx ES Cbg

Homogeneous DEM Squares Corner

Noisy 1.0 3.54 0.029 36.50
Frost 17.8 1.98 0.138 36.41

WGLRR 200.3 1.82 0.201 30.62
BWNNM 123.8 2.03 0.278 32.80
K-SVD 231.7 2.09 0.231 33.89
FANS 161.1 2.55 0.155 35.50

Proposed method 180.6 2.23 0.189 35.65

4.2. Results with Actual Synthetic Aperture Radar Images

To verify the practicability of the proposed method, we also need to examine the proposed method
in the actual SAR image. They are, a Terra-SAR image with 1-m resolution Meteorite (MR) scene of
the Swabian Jura and a mini-SAR image with 4 in resolution Capitol Building (CB) scene, courtesy of
Sandia National Laboratory (Figure 7). Figures 8 and 9 show the filtered images. For these images,
we compute the ENL and computation time (Time). Larger ENL values indicate stronger speckle
rejection and a higher ability to distinguish different gray levels. We measure the homogeneous area
with white boxes in Figure 7. Table 3 shows the ENL values and the computation time for different
methods. It can be seen in Table 3 that WGLRR has the biggest ENL values than the other methods
which indicates the strongest speckle rejection ability. However, the strong noise reduction comes at
the cost of some loss of details.

To achieve a clearer display, we also select parts of the denoised images to amplify, as shown
by Figures 10 and 11. We can see that, although the ENLs of WGLRR and K-SVD are superior to
our method, they oversmooth the image edges and details. As an excellent denoising algorithm, the
FANS filter combines the nonlocal filtering approach with other effective denoising tools which can
retain the image details and textures while improving speckle suppression effectively. However, some
typical wavelet artifacts appear because of the wavelet shrinkage, as shown in Figures 10e and 11e.
Our method seems to be the best tradeoff between protecting the details and reducing the noise, while
avoiding the artifacts effectively. As a kind of non-reference measure, the visual inspection of the ratio
image can provide not only information on the ability of edge-preservation but also indications of
filtering artifacts [41]. Due to limited space, we only show the ratio image of Figure 7b by different
denoising methods in Figure 12. In Figure 12, we can see that the ratio image of our method has
the least edge information and is close to speckle. Considering the ratio statistics, on the one hand,
the mean value of the ratio image is usually used to test the level of bias. Since the denoised methods
are designed to preserve the mean of backscattered intensity, the mean value should be equal to
one [24]. The methods involved in this paper shows from a minimum of about 0.77 for WGLRR,
through 0.87 for FANS and 0.89 for the proposed method, to a maximum of 0.92 for BWNNM which
indicates that the proposed method has the smaller bias. On the other hand, the ENL of the ratio
images indicates the speckle power suppression. The pixels in the white box of Figure 7 are used to
compute the ENL of the ratio image (ENLr). The average ENLr of the proposed method is about 2.97
and much close to the same of the original images which also reflects the stronger speckle suppression
ability. According to the above analysis, our method guarantees a significant noise reduction without
introducing some kinds of artifacts and may be a promising despeckling method.
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Table 3. ENL and computation time for actual SAR images.

MR CB

ENL Time (s) ENL Time (s)

Noisy 3.01 —- 2.99 —-
Frost 7.98 80.31 8.02 76.18

WGLRR 101.6 160.1314 235.2 158.9082
BWNNM 87.9 156.7239 92.6 148.0935
K-SVD 100.3 280.4576 250.9 340.9642
FANS 20.5 135.4590 36.3 132.5261

Proposed method 39.2 207.8261 63.6 198.9801

(a) (b)

Figure 7. Test SAR images with selected areas for ENL computation (white box): (a) MR; and (b) CB.

(a) (b) (c)

(d) (e) (f)

Figure 8. Filtered images for MR: (a) Frost; (b) WGLRR; (c) BWNNM; (d) K-SVD; (e) FANS; and (f) the
proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Filtered images for CB: (a) Frost; (b) WGLRR; (c) BWNNM; (d) K-SVD; (e) FANS; and (f) the
proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 10. Zoom of filtered images for MR: (a) Frost; (b) WGLRR; (c) BWNNM; (d) K-SVD; (e) FANS;
and (f) the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Zoom of filtered images for CB: (a) Frost; (b) WGLRR; (c) BWNNM; (d) K-SVD; (e) FANS;
and (f) the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 12. Ratio images of different denoised methods for CB: (a) Frost; (b) WGLRR; (c) BWNNM;
(d) K-SVD; (e) FANS; and (f) the proposed method.
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5. Conclusions

We proposed a boosting SAR despeckling method based on the non-local weighted group
low-rank representation. Taking into account the probabilistic noise distribution of speckle in SAR
images, we used the ad hoc block similar measure to form a data matrix. Integrating the corrupted
probability of each pixel to the LRR model, we were able to constrain the fidelity of the recovered
image. Using a weighted averaging procedure to suppress noise and boosting the algorithm to reduce
the local-global gap, we were able to obtain the denoised image. Experimental results verify the
validity of the proposed method. The edges and structures in the SAR images can be well reserved
with fewer artifacts, which is very important for the interpretation of other SAR images. Compared
with other methods tested in our paper, our method contains the block similarity measure step in the
nonlocal area, singular value decomposition in the SVT operator and boosting of the method which
are very time consuming. In future work, we will seek a new computation to reduce the complexity to
apply the proposed method to SAR images, achieving superior despeckling.
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