Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes
Abstract
1. Introduction
2. Experiment Details
2.1. Preparations of the Carbon Nanostructures
2.2. Characterizations
2.3. Measurement of Sensing Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nela, L.; Tang, J.S.; Cao, Q.; Tulevski, G.; Han, S.J. Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054–2059. [Google Scholar] [CrossRef] [PubMed]
- Bahoumina, P.; Hallil, H.; Lachaud, J.L.; Abdelghani, A.; Frigui, K.; Bila, S.; Baillargeat, D.; Ravichandran, A.; Coquet, P.; Paragua, C.; et al. Microwave flexible gas sensor based on polymer multi wall carbon nanotubes sensitive layer. Sens. Actuators B Chem. 2017, 249, 708–714. [Google Scholar] [CrossRef]
- Rudreshappa, G.E.; Samal, S.S.; Manohara, S.R. Humidity sensing properties of multiwalled carbon nanotube/polyvinyl alcohol nanocomposite films. Nanosci. Nanotechnol. 2016, 6, 127–134. [Google Scholar]
- Liu, Y.Z.; Lai, W.P.; Yu, T.; Kang, Y.; Ge, Z.X. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution. Phys. Chem. Chem. Phys. 2015, 17, 6995–7001. [Google Scholar] [CrossRef] [PubMed]
- Cantalini, C.; Valentini, L.; Lozzi, L.; Armentano, I.; Kenny, J.M.; Santucci, S. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sens. Actuators B Chem. 2003, 93, 333–337. [Google Scholar] [CrossRef]
- Valentini, L.; Mercuri, F.; Armentano, I.; Cantalini, C.; Picozzi, S.; Lozzi, L.; Santucci, S.; Sgamellotti, A.; Kenny, J.M. Role of defects on the gas sensing properties of carbon nanotubes thin films: Experiment and theory. Chem. Phys. Lett. 2004, 387, 356–361. [Google Scholar] [CrossRef]
- Kombarakkaran, J.; Clewett, C.F.M.; Pietrass, T. Ammonia adsorption on multi-walled carbon nanotubes. Chem. Phys. Lett. 2007, 441, 282–285. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.W.; Chapline, M.G.; Peng, S.; Cho, K.J.; Dai, H.J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.Q.; Kim, J.K.; Schubert, E.F. Silica nanorod-array films with very low refractive indices. Nano Lett. 2005, 5, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, S.; Nagaraja, K.S. Electrical and humidity sensing properties of chromium(III) oxide–tungsten(VI) oxide composites. Sens. Actuators B Chem. 2003, 92, 144–150. [Google Scholar] [CrossRef]
- Zhao, J.; Bulduml, A.; Han, J.; Lu, J.P. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 2002, 13, 195–200. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.P.; Nguyen, T.K.; Qamar, A.; Woodfeld, P.; Zhu, Y.; Nguyen, N.T.; Dao, D.V. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D Appl. Phys. 2017, 50, 215401. [Google Scholar] [CrossRef]
- Chu, J.; Peng, X.Y.; Aldalbahi, A.; Panhuis, M.; Velazquez, R.; Feng, P.X. A simple route to carbon micro- and nanorod hybrid structures by physical vapour deposition. J. Phys. D Appl. Phys. 2012, 45, 395102. [Google Scholar] [CrossRef]
- Feng, P.X.; Zhang, H.X.; Peng, X.Y.; Sajjad, M.; Chu, J. A novel compact design of calibration equipment for gas and thermal sensors. Rev. Sci. Instrum. 2011, 82, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Y.; Chan, Y.C.; Zhang, K.L. Fast response resistive humidity sensitivity ofpolyimide/multiwall carbon nanotube composite films. Sens. Actuators B Chem. 2011, 152, 99–106. [Google Scholar] [CrossRef]
- Lukaszewicz, J.P.; Skompska, M. Carbon films for humidity sensors. Sens. Lett. 2006, 113, 970–977. [Google Scholar] [CrossRef]
- Chu, J.; Peng, X.Y.; Sajjad, M.; Yang, B.Q.; Feng, P.X. Nanostructures and sensing properties of ZnO prepared using normal and oblique angle deposition techniques. Thin Solid Films 2012, 520, 3493–3498. [Google Scholar] [CrossRef]
- Wang, X.D.; Song, J.H.; Liu, J.; Wang, Z.L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Feng, P.X. Properties of one-dimensional tilted carbon nanorod arrays synthesized by the catalyst-assisted oblique angle deposition technique. J. Phys. D Appl. Phys. 2009, 42, 025406. [Google Scholar] [CrossRef]
- Jia, Y.T.; Yu, H.; Cai, J.; Li, Z.; Dong, F.C. Explore on the quantitative analysis of specific surface area on sensitivity of polyacrylic acid-based QCM ammonia sensor. Sens. Actuators B Chem. 2017, 243, 1042–1045. [Google Scholar] [CrossRef]
- Zhang, H.X.; Feng, P.X. Electrical and structural characterizations of one-dimensional carbon nanostructures synthesized at ambient pressure. J. Phys. D Appl. Phys. 2008, 41, 155425. [Google Scholar] [CrossRef]
- Rossi, M.C.; Salvatori, S.; Ascarelli, P.; Cappelli, E.; Orlando, S. Effect of nanostructure and back contact material on the field emission properties of carbon films. Diam. Relat. Mater. 2002, 11, 819–823. [Google Scholar] [CrossRef]
- Adu, K.W.; Li, Q.; Desai, S.C.; Sidorov, A.N.; Sumanasekera, G.U.; Lueking, A.D. Morphological, structural, and chemical effects in response of novel carbide derived carbon sensor to NH3, N2O, and air. Langmuir 2009, 25, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.P.; Lim, L.T.; Min, N.K.; Lee, M.J.; Lee, C.J.; Park, C.W. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators B Chem. 2010, 145, 120–125. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Liu, X.W.; Chen, W.P.; Li, T. Carbon nanotubes humidity sensor based on high testing frequencies. Sens. Actuators A Phys. 2011, 168, 10–13. [Google Scholar] [CrossRef]
- Liu, L.T.; Ye, X.Y.; Wu, K.; Han, R.; Zhou, Z.Y.; Cui, T.H. Humidity sensitivity of multiwalled carbon nanotube networks deposited by dielectrophoresis. Sensors 2009, 9, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Cao, T.; Zhou, L.D.; Gu, E.D.; Yu, D.S.; Jiang, D.S. Layer-by-layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films. Sens. Actuators B Chem. 2006, 119, 512–515. [Google Scholar] [CrossRef]
- Chen, H.J.; Xue, Q.Z.; Ma, M.; Zhou, X.Y. Capacitive humidity sensor based on amorphous carbon film/n-Si heterojunctions. Sens. Actuators B Chem. 2010, 150, 487–489. [Google Scholar] [CrossRef]
- Peng, X.Y.; Chu, J.; Aldalbahi, A.; Rivera, M.; Wang, L.D.; Duan, S.K.; Feng, P. A flexible humidity sensor based on KC–MWCNTs composites. Appl. Surf. Sci. 2016, 387, 149–154. [Google Scholar] [CrossRef]
- Tetelin, A.; Pellet, C.; Laville, C.; N’Kaoua, G. Fast response humidity sensors for a medical microsystem. Sens. Actuators B Chem. 2003, 91, 211–218. [Google Scholar] [CrossRef]
- Chu, J.; Peng, X.; Feng, P.; Sheng, Y.; Zhang, J. Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sens. Actuators B Chem. 2013, 178, 508–513. [Google Scholar] [CrossRef]
- Zahab, A.; Spina, L.; Poncharal, P.; Marliere, C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 2000, 62, 10000–10003. [Google Scholar] [CrossRef]
Materials | Sensitivity | Response Time | Recovery Time | Ref. |
---|---|---|---|---|
PI a/MWCNT (2.0 wt %) | 0.0018 (20–90% RH) | 5 s | - | [16] |
MWCNTs | 0.0028(11–75.5% RH) | 16 s | 8 s | [25] |
MWCNT network | 0.0056 (25–95% RH) | 3 s | 25 s | [26] |
PEI b/MWCNT (Layer-by-layer) | 0.0099 (5–85% RH) | 2 s | 30 s | [27] |
a-C c film/n-Si | 0.0238 (11–95% RH) | ~3 min | ~4 min | [28] |
KC d-MWCNT-G e | 0.025 (20–80% RH) | 50 s | 100 s | [29] |
BCB f, 4024-40, Dow Chemical | 0.0250 (50–90% RH) | 0.5 s | 4.5 s | [30] |
Carbon Nanosheets | 0.033 (11–40% RH) | 30 s | 90 s | [31] |
Carbon Nanoplumes | 0.117 (5–65% RH) | 8 s | 9.7 s | ours |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Peng, X.; Wang, L.; Duan, S.; Chu, J.; Jia, P. Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes. Sensors 2018, 18, 3407. https://doi.org/10.3390/s18103407
Qiao S, Peng X, Wang L, Duan S, Chu J, Jia P. Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes. Sensors. 2018; 18(10):3407. https://doi.org/10.3390/s18103407
Chicago/Turabian StyleQiao, Siqi, Xiaoyan Peng, Lidan Wang, Shukai Duan, Jin Chu, and Pengfei Jia. 2018. "Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes" Sensors 18, no. 10: 3407. https://doi.org/10.3390/s18103407
APA StyleQiao, S., Peng, X., Wang, L., Duan, S., Chu, J., & Jia, P. (2018). Highly Sensitive Humidity Sensor Based on Oblique Carbon Nanoplumes. Sensors, 18(10), 3407. https://doi.org/10.3390/s18103407