# A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Biological Evidence

## 3. Problem Formulation

#### 3.1. Mathematical Model

#### 3.2. General Regularized the Objective Function

## 4. Method

#### 4.1. Search Strategy of AMSA

Algorithm 1: The choice mechanism of the turning direction |

repeat { |

If ($F(k-2)$$>$$F(k-1)$ and the rotation direction is anticlockwise (CCW) at $k-1$ |

or |

$F(k-2)$$\le $$F(k-1)$ and the rotation direction is clockwise (CW) at $k-1$) |

Then rotate CW $\Delta \theta (k)$ and move forward ${d}_{k}$ |

Else rotate CCW $\Delta \theta (k)$ and move forward ${d}_{k}$ |

} |

#### 4.2. Online Estimation of Measurement Noise

## 5. Results

#### 5.1. Simulation Setup

#### 5.2. Simulation Results

#### 5.3. Performance Evaluation of the Algorithms

#### 5.3.1. Convergence Analysis

#### 5.3.2. Robustness

#### 5.3.3. Analysis Paths

#### 5.4. Discussions

^{n}), where $n$ is the number of the neighborhood of the current position.

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Wadhams, P. The use of autonomous underwater vehicles to map the variability of under-ice topography. Ocean Dyn.
**2012**, 62, 439–447. [Google Scholar] [CrossRef] - Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murtona, B.J.; Connellya, D.P.; Betta, B.J.; Ruhla, H.A.; Morrisa, K.J.; Peakallb, J.; Parsonsc, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol.
**2014**, 352, 451–468. [Google Scholar] [CrossRef] [Green Version] - Ding, W.; Wang, J.; Rizos, C. Improving Adaptive Kalman Estimation in GPS/INS Integration. J. Navig.
**2007**, 60, 517–529. [Google Scholar] [CrossRef] - Stutters, L.; Liu, H.; Tiltman, C.; Brown, D.J. Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst. Man Cybern. Part C
**2008**, 38, 581–589. [Google Scholar] [CrossRef] - Lohmann, K.J. Animal behaviour: Magnetic-field perception. Nature
**2010**, 464, 1140–1142. [Google Scholar] [CrossRef] [PubMed] - Benhamou, S.; Bonadonna, F.; Jouventin, P. Successful homing of magnet-carrying white-chinned petrels released in the open sea. Anim. Behav.
**2003**, 65, 729–734. [Google Scholar] [CrossRef] - Wiltschko, R.; Wiltschko, W. Evidence for the use of magnetic outward-journey information in homing pigeons. Sci. Nat.
**1978**, 65, 112–113. [Google Scholar] [CrossRef] - Luschi, P.; Benhamou, S.; Girard, C.; Ciccione, S.; Roos, D.; Sudre, J.; Benvenuti, S. Marine turtles use geomagnetic cues during open-sea homing. Curr. Biol.
**2007**, 17, 126–133. [Google Scholar] [CrossRef] [PubMed] - Kinsey, J.C.; Eustice, R.M.; Whitcomb, L.L. A survey of underwater vehicle navigation: Recent advances and new challenges. IFAC Conf. Manoeuvering Control Mar. Craft
**2006**, 88, 20090–20102. [Google Scholar] - Zhou, L.; Sun, X.; Li, X.; Chen, J. Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide. Sensors
**2011**, 11, 6856–6867. [Google Scholar] [CrossRef] [PubMed] - Caifa, G.; Anliang, L.; Hong, C.; Yang, H. Algorithm for geomagnetic navigation and its validity evaluation. In Proceedings of the International Conference on Computer Science and Automation Engineering (CSAE), Shanghai, China, 10–12 June 2011; Volume 1, pp. 573–577. [Google Scholar]
- Winklhofer, M. The physics of geomagnetic-field transduction in animals. IEEE Trans. Magn.
**2009**, 45, 5259–5265. [Google Scholar] [CrossRef] - Lin, Y.; Yan, L.; Tong, Q. Underwater geomagnetic navigation based on ICP algorithm. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Sanya, China, 15–18 December 2007; pp. 2115–2120. [Google Scholar]
- Ge, Z.; Zhou, J. A new approach to geomagnetic matching navigation. In Proceedings of the Second International Conference on Spatial Information Technology, Wuhan, China, 10–11 November 2007; pp. 67952–67956. [Google Scholar]
- Paolo, L.; Hays, G.C.; Floriano, P. A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos
**2003**, 103, 293–302. [Google Scholar] - Dennis, T.E.; Rayner, M.J.; Walker, M.M. Evidence that pigeons orient to geomagnetic intensity during homing. Proc. R. Soc. Lond. B
**2007**, 274, 1153–1158. [Google Scholar] [CrossRef] [PubMed] - Liu, M.; Liu, K.; Yang, P.; Lei, X.; Li, H. Bio-inspired navigation based on geomagnetic. In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics, Shenzhen, China, 12–14 December 2013; pp. 2339–2344. [Google Scholar]
- Liu, M.; Liu, K.; Peng, X.; Li, H. Bio-inspired navigation based on geomagnetic for the autonomous underwater vehicle. In Proceedings of the IEEE International Conference on OCEANS, Taipei, Taiwan, 7–10 April 2014; pp. 1–5. [Google Scholar]
- Bonadonna, F.; Bajzak, C.; Benhamou, S.; Igloi, K.; Jouventin, P.; Lipp, H.P.; Dell’Omo, G. Orientation in the wandering albatross: Interfering with magnetic perception does not affect orientation performance. Proc. R. Soc. B
**2005**, 272, 489–495. [Google Scholar] [CrossRef] [PubMed] - Benhamou, S.; Sudre, J.; Bourjea, J.; Ciccione, S.; De Santis, A.; Luschi, P. The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation. PLoS ONE
**2011**, 6, e26672. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fraenkel, G.S.; Gunn, D.L. The Orientation of Animals. Kineses, Taxes and Compass Reactions. Am. Nat.
**1941**, 93, 619–620. [Google Scholar] - Grasso, F.W. Invertebrate-Inspired sensory-motor systems and autonomous, olfactory-guided exploration. Biol. Bull.
**2001**, 200, 160–168. [Google Scholar] [CrossRef] [PubMed] - Maus, S.; Macmillan, S.; Mclean, S.; Hamilton, B.; Thomson, A.; Nair, M.; Rollins, C. The US/UK World Magnetic Model for 2010–2015; British Geological Survey: Nottingham, UK, 2012; Available online: http:nora.nerc.ac.uk/18737/ (accessed on 21 December 2017).
- Codling, E.A.; Plank, M.J.; Benhamou, S. Random walk models in biology. J. R. Soc.
**2008**, 5, 813–834. [Google Scholar] [CrossRef] [PubMed] - Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: Straightness, sinuosity, or fractal dimension? J. Theor. Biol.
**2004**, 229, 209–220. [Google Scholar] [CrossRef] [PubMed]

No | Parameters | Size |
---|---|---|

1 | ${\theta}_{0}$ | 30° |

2 | ${\gamma}_{1}$ | 0.1 |

3 | ${\gamma}_{2}$ | 0.3 |

4 | $\epsilon $ | 0.0001 |

5 | ${F}_{\mathrm{min}}$ | 0.05 |

6 | ${d}_{k}$ | 500 m |

7 | $\sigma $ | 10 |

Algorithm | The Steps of Iteration | The Straightness Index |
---|---|---|

GDSA | 438 | 0.6217 |

AMSA | 343 | 0.7514 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, H.; Liu, M.; Liu, K.; Zhang, F.
A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy. *Sensors* **2018**, *18*, 39.
https://doi.org/10.3390/s18010039

**AMA Style**

Li H, Liu M, Liu K, Zhang F.
A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy. *Sensors*. 2018; 18(1):39.
https://doi.org/10.3390/s18010039

**Chicago/Turabian Style**

Li, Hong, Mingyong Liu, Kun Liu, and Feihu Zhang.
2018. "A Study on the Model of Detecting the Variation of Geomagnetic Intensity Based on an Adapted Motion Strategy" *Sensors* 18, no. 1: 39.
https://doi.org/10.3390/s18010039