Development of a Machine Vision Method for the Monitoring of Laying Hens and Detection of Multiple Nest Occupations
Abstract
:1. Introduction
2. Material and Methods
2.1. The Experimental Housing System
2.2. The Experimental Group of Animals
2.3. The Experimental Nesting System
2.4. The “Nest-Usage-Sensor” Developed
- it calculated an histogram with the frequency distribution of the pixel intensities;
- it calculated the “mean floor temperature” of the room when considering that: (a) the thermo-camera is pointed down; (b) to each pixel intensity of the thermografic image corresponds a specific measured temperature; and (c) the histogram generally has a normal distribution where the mean value corresponds to the background intensity;
- it added a defined shift to the calculated “mean floor temperature” and it defined a “Background Color Threshold” (BCT) converting the value obtained in a grey scale color;
- it created a binary image giving a color to all grey scale colored pixels that overcame the BCT;
- it improved the quality of the binary image reducing the number of small “particles” through the application of an image filter;
- it counted the number of “Colored Pixels” (CP);
- it compared the number of CP with a “Multiple Nest Occupation Threshold” (MNOT), a value that is proportional to the “visible” area of more than one hen in the nest;
- when the number of CP overcame the MNOT, it set-up to 1 the field “Multiple Nest Occupation” (MNO) and it performed a pattern recognition, using a defined “hen template”, in order to determine how many hens were in the nest at the same time; and,
- when the number of CP did not overcome the MNOT, it set-up to 0 the field MNO.
2.5. The Design of the Performed Tests
2.5.1. Setup Procedure of the “Nest-Usage-Sensor”: Step A
2.5.2. Setup Procedure of the “Nest-Usage-Sensor”: Step B
2.5.3. Performance Evaluation of “Nest-Usage-Sensor”
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rodenburg, T.B.; De Reu, K.; Tuyttens, F.A.M. Performance, welfare, health and hygiene of laying hens in non-cage systems in comparison with cage systems. In 30th Poultry Science Symposium; WPSA-UK Branch: Glasgow, UK, 2011; pp. 36–37. [Google Scholar]
- Daigle, C.L.; Banerjee, D.; Montgomery, R.A.; Biswas, S.; Siegford, J.M. Moving GIS research indoors: Spatiotemporal analysis of agricultural animals. PLoS ONE 2014, 9, e104002. [Google Scholar] [CrossRef] [PubMed]
- Vits, A.; Weitzenbürger, D.; Distl, O. Comparison of different housing systems for laying hens in respect to economic, health and welfare parameters with special regard to organized cages (literature review). Dtsch. Tierarztliche Wochenschr. 2005, 112, 332–342. [Google Scholar]
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Quwaider, M.Q.; Daigle, C.L.; Biswas, S.K.; Siegford, J.M.; Swanson, J.C. Development of a wireless body-mounted sensor to monitor location and activity of laying hens in a non-cage housing system. Trans. ASABE 2010, 53, 1705–1713. [Google Scholar] [CrossRef]
- Banerjee, D.; Daigle, C.L.; Dong, B.; Wurtz, K.; Newberry, R.C.; Siegford, J.M.; Biswas, S. Detection of jumping and landing force in laying hens using wireless wearable sensors. Poult. Sci. 2014, 93, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Sumner, D.A.; Gow, H.; Hayes, D.; Matthews, W.; Norwood, B.; Rosen-Molina, J.T.; Thurman, W. Economic and market issues on the sustainability of egg production in the United States: Analysis of alternative production systems. Poult. Sci. 2011, 90, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Thurner, S.; Wendl, G.; Preisinger, R. Funnel nest box: A system for automatic recording of individual performance and behaviour of laying hens in floor management. In Proceedings of the XII European Poultry Conference, Verona, Italy, 10–14 September 2006; pp. 610–611. [Google Scholar]
- Thurner, S.; Wendl, G. Nest Occupancy Rate in Automatic Single Nest Boxes for Laying Hens in Group Housing Systems. Landtechnik 2006, 60, 164–165. [Google Scholar]
- Marx, G.; Klein, S.; Weigend, S. An automated nest box system for individual performance testing and parentage control in laying hens maintained in groups. Arch. Geflügelkd. 2002, 66, 141–144. [Google Scholar]
- Burel, C.; Ciszuk, P.; Wiklund, B.; Brannas, E.; Kiessling, A. Note on a method for individual recording of laying performance in groups of hens. Appl. Anim. Behav. Sci. 2002, 77, 167–171. [Google Scholar] [CrossRef]
- Icken, W.; Cavero, D.; Schmutz, M.; Thurner, S.; Wendl, G.; Preisinger, R. Analysis of the free range behaviour of laying hens and the genetic and phenotypic relationships with laying performance. Br. Poult. Sci. 2008, 49, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Icken, W.; Cavero, D.; Thurner, S.; Schmutz, M.; Wendl, G.; Preisinger, R. Relationship between time spent in the winter garden and shell colour in brown egg stock. Arch. Geflügelkd. 2008, 75, 145–150. [Google Scholar]
- Icken, W.; Preisinger, R.; Thurner, S.; Wendl, G. New selection traits from group housing systems. Agric. Eng. 2010, 45, 22–26. [Google Scholar]
- Icken, W.; Schmutz, M.; Fries, R.; Thurner, S.; Wendl, G.; Preisinger, R. Genetic parameters for egg production and nesting behaviour in a non-cage environment. In Proceedings of the XII European Poultry Conference, Verona, Italy, 10–14 September 2006. [Google Scholar]
- Icken, W.; Thurner, S.; Cavero, D.; Schmutz, M.; Preisinger, R. Genetische analyse des legemusters in der bodenhaltung im hinblick auf neue leistungs- prüfungskriterien für die legehennenzucht. Arch. Anim. Breed. 2009, 52, 187–199. [Google Scholar] [CrossRef]
- Icken, W.; Thurner, S.; Cavero, D.; Schmutz, M.; Wendl, G. Analyse des nestverhaltens von legehennen in der Bodenhaltung analysis of the nesting behaviour from laying hens in a floor system. Arch. Geflügelkd. 2009, 73, 102–109. [Google Scholar]
- Icken, W.; Thurner, S.; Heinrich, A.; Kaiser, A.; Cavero, D.; Wendl, G.; Fries, R.; Schmutz, M.; Preisinger, R. Higher precision level at individual laying performance tests in noncage housing systems. Poult. Sci. 2013, 92, 2276–2282. [Google Scholar] [CrossRef] [PubMed]
- Pauli, S.; Heinrich, A.; Thurner, S.; Icken, W.; Erbe, M.; Wendl, G.; Preisinger, R. Comparative study on nesting behaviour with two different RFID based laying nest boxes. In Proceedings of the XIIIth European Poultry Conference, Tours, France, 23–27 August 2010; Volume 66, pp. 573–577. [Google Scholar]
- Thurner, S.; Maier, S.; Icken, W.; Wendl, G.; Preisinger, R. Identification reliability of laying hens at the wide electronic pop hole. Landtechnik 2010, 65, 139–141. [Google Scholar]
- Thurner, S.; Wendl, G. Individual ranging behaviour of laying Hens—Automatic Registration with RFID-Technology. Landtechnik 2005, 60, 30–31. [Google Scholar]
- Wendl, G.; Klindwoth, K. Electronic animal identification for behavioural investigations of laying hens. Landtechnik 2000, 55, 364–365. [Google Scholar]
- Wendl, G.; Thurner, S.; Fröhlich, G.; Böck, S.; Weinfurtner, R. Devices to individually and automatically record the performance and behaviour parameters of laying hens in group housing systems. Landtechnik 2007, 62, 298–299. [Google Scholar]
- Siegford, J.M.; Berezowski, J.; Biswas, S.K.; Daigle, C.L.; Gebhardt-Henrich, S.G.; Hernandez, C.E.; Thurner, S.; Toscano, M.J. Assessing activity and location of individual laying hens in large groups using modern technology. Animals 2016, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaninelli, M.; Costa, A.; Tangorra, F.M.; Rossi, L.; Agazzi, A.; Savoini, G. Preliminary evaluation of a nest usage sensor to detect double nest occupations of laying hens. Sensors 2015, 15, 2680–2693. [Google Scholar] [CrossRef] [PubMed]
- Maldagues, X. Infrared and thermal testing. In Nondestructive Testing Handbook, 3rd ed.; Moore, P., Ed.; The American Society for Nondestructive Testing: Columbus, OH, USA, 2001; Volume 3. [Google Scholar]
- Baracho, M.; Nääs, I.; Nascimento, G.; Cassiano, J.; Oliveira, K. Surface temperature distribution in broiler houses. Rev. Bras. Ciência Avícola 2011, 13, 4–9. [Google Scholar] [CrossRef]
- Aydin, A.; Cangar, O.; Ozcan, S. E.; Bahr, C.; Berckmans, D. Application of a fully automatic analysis tool to assess the activity of broiler chickens with different gait scores. Comput. Electron. Agric. 2010, 73, 194–199. [Google Scholar] [CrossRef]
- Ferreira, V.; Francisco, N.; Belloni, M.; Aguirre, G.; Caldara, F.; Nääs, I.; Garcia, R.; Almeida Paz, I.; Polycarpo, G. Infrared thermography applied to the evaluation of metabolic heat loss of chicks fed with different energy densities. Rev. Bras. Ciência Avícola 2011, 13, 113–118. [Google Scholar] [CrossRef]
- Yahav, S.; Giloh, M. Infrared thermography—Applications in poultry biological research. In Infrared Thermography; Prakash, R.V., Ed.; InTech: Rijeka, Croatia, 2012; pp. 93–116. [Google Scholar]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Incorporating smart sensing technologies into the poultry industry. J. World’s Poult. Res. 2013, 3, 106–128. [Google Scholar]
- Nakarmi, A.D.; Tang, L.; Xin, H. Automated tracking and behavior quantification of laying hens using 3D computer vision and radio frequency identification technologies. Trans. ASABE 2014, 57, 1455–1472. [Google Scholar]
- Wang, C.; Chen, H.; Zhang, X.; Meng, C. Evaluation of a laying-hen tracking algorithm based on a hybrid support vector machine. J. Anim. Sci. Biotechnol. 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Kashiha, M.A.; Green, A.R.; Sales, T.G.; Bahr, C.; Berckmans, D.; Gates, R.S. Performance of an image analysis processing system for hen tracking in an environmental preference chamber. Poult. Sci. 2014, 93, 2439–2448. [Google Scholar] [CrossRef] [PubMed]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bontempo, V.; Dell’Orto, V.; Savoini, G. A monitoring system for laying hens that uses a detection sensor based on infrared technology and image pattern recognition. Sensors 2017, 17, 1195. [Google Scholar] [CrossRef] [PubMed]
- Zaninelli, M.; Redaelli, V.; Tirloni, E.; Bernardi, C.; Dell’Orto, V.; Savoini, G. First results of a detection sensor for the monitoring of laying hens reared in a commercial organic egg production farm based on the use of infrared technology. Sensors 2016, 16, 1757. [Google Scholar] [CrossRef] [PubMed]
- Daigle, C.L.; Banerjee, D.; Biswas, S.; Siegford, J.M. Noncaged laying hens remain unflappable while wearing body-mounted sensors: Levels of agonistic behaviors remain unchanged and resource use is not reduced after habituation. Poult. Sci. 2012, 91, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, H.H.; Burgess, L.R.; Demmers, T.G.; Wathes, M. The preferences of laying hens for different concentrations of atmospheric ammonia. Appl. Anim. Behav. Sci. 2000, 68, 307–318. [Google Scholar] [CrossRef]
- Zaninelli, M.; Rossi, L.; Costa, A.; Tangorra, F.M.; Guarino, M.; Savoini, G. Performance of injected RFID transponders to collect data about laying performance and behaviour of hens. Larg. Anim. Rev. 2016, 22, 77–82. [Google Scholar]
- Zaninelli, M.; Tangorra, F.M.; Castano, S.; Ferrara, A.; Ferro, E.; Brambilla, P.G.; Faverzani, S.; Chinosi, S.; Scarpa, P.; Di Giancamillo, M.; et al. The O3-Vet project: A veterinary electronic patient record based on the web technology and the ADT-IHE actor for veterinary hospitals. Comput. Methods Programs Biomed. 2007, 87, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Tangorra, F.M.; Zaninelli, M.; De Santis, C. Development of HW and SW solutions for milk traceability. Comput. Agric. Nat. Resour. 2006, 2006, 475–480. [Google Scholar]
- Zaninelli, M.; Rossi, L.; Costa, A.; Tangorra, F.M.; Agazzi, A.; Savoini, G. Monitoraggio dello stato di salute delle capre attraverso l’analisi on-line della conducibilità elettrica del latte. Larg. Anim. Rev. 2015, 21, 81–86. [Google Scholar]
- Jain, A.K. Fundamentals of Digital Image Processing; Kailath, T., Ed.; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Klinger, T. Image Processing with LabVIEW and IMAQ Vision; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Steen, K.A.; Villa-Henriksen, A.; Therkildsen, O.R.; Green, O. Automatic detection of animals in mowing operations using thermal cameras. Sensors 2012, 12, 7587–7597. [Google Scholar] [CrossRef] [PubMed]
- Team R Core Development. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Chambers, J.M.; Freeny, A.; Heiberger, R.M. Analysis of variance; designed experiments. In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cove: Pacific Grove, CA, USA, 1992. [Google Scholar]
Shifts of the Mean Floor Temperature (∆t-°C) | Mean Values of Colored Pixels in Single Nest Occupations (Pixels) | Mean Value of Colored Pixels in Double Nest Occupations (Pixels) | Values of Significance |
---|---|---|---|
1 | 11,272 | 21,439 | p < 0.01 |
3 | 2373 | 5172 | p < 0.01 |
5 | 603 | 1425 | p < 0.01 |
Shifts of the Mean Floor Temperature (∆t-°C) | Sensitivity (%) | Specificity (%) | Cut-off Level (Pixels) |
---|---|---|---|
1 | 80.1 | 87.3 | 13,509 |
3 | 80.0 | 90.9 | 2877 |
5 | 80.1 | 91.5 | 796 |
Shifts of the Mean Floor Temperature (∆t-°C) | Template Shapes | Geometric Futures | Values of the Mean and S.E. (Pixels) | Confidence Intervals at 95% (Pixels) | Values of Significance |
---|---|---|---|---|---|
1 | ellipse | major axis | 158 ± 4 | 151–166 | p < 0.01 |
1 | ellipse | minor axis | 83 ± 3 | 76–89 | p < 0.01 |
3 | triangle | height | 68 ± 1 | 65–71 | p < 0.01 |
3 | triangle | base | 47 ± 1 | 46–49 | p < 0.01 |
5 | triangle | height | 43 ± 1 | 42–44 | p < 0.01 |
5 | triangle | base | 33 ± 1 | 32–34 | p < 0.01 |
Shifts of the Mean Floor Temperature (∆t-°C) | Sensitivity (%) | Specificity (%) | Image Pattern Recognition Templates (Shape and Geometric Features in Pixels) |
---|---|---|---|
1 | 57.4 | 89.0 | ellipse (158 × 83) |
3 | 70.3 | 81.8 | triangle (68 × 47) |
5 | 72.3 | 90.7 | triangle (43 × 33) |
Results Classification | Positive | Negative | Total |
---|---|---|---|
True | 45 | 125 | 170 |
False | 6 | 2 | 8 |
Total | 51 | 127 | 178 |
Type of Occupation of the Nest | Results Classification | Positive | Negative | Total |
---|---|---|---|---|
Double | True | 31 | 129 | 160 |
False | 7 | 11 | 8 | |
Total | 38 | 140 | 178 | |
Triple | True | 4 | 164 | 168 |
False | 9 | 1 | 10 | |
Total | 13 | 165 | 178 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaninelli, M.; Redaelli, V.; Luzi, F.; Mitchell, M.; Bontempo, V.; Cattaneo, D.; Dell’Orto, V.; Savoini, G. Development of a Machine Vision Method for the Monitoring of Laying Hens and Detection of Multiple Nest Occupations. Sensors 2018, 18, 132. https://doi.org/10.3390/s18010132
Zaninelli M, Redaelli V, Luzi F, Mitchell M, Bontempo V, Cattaneo D, Dell’Orto V, Savoini G. Development of a Machine Vision Method for the Monitoring of Laying Hens and Detection of Multiple Nest Occupations. Sensors. 2018; 18(1):132. https://doi.org/10.3390/s18010132
Chicago/Turabian StyleZaninelli, Mauro, Veronica Redaelli, Fabio Luzi, Malcolm Mitchell, Valentino Bontempo, Donata Cattaneo, Vittorio Dell’Orto, and Giovanni Savoini. 2018. "Development of a Machine Vision Method for the Monitoring of Laying Hens and Detection of Multiple Nest Occupations" Sensors 18, no. 1: 132. https://doi.org/10.3390/s18010132
APA StyleZaninelli, M., Redaelli, V., Luzi, F., Mitchell, M., Bontempo, V., Cattaneo, D., Dell’Orto, V., & Savoini, G. (2018). Development of a Machine Vision Method for the Monitoring of Laying Hens and Detection of Multiple Nest Occupations. Sensors, 18(1), 132. https://doi.org/10.3390/s18010132