A Low Cost BLE Transceiver with RX Matching Network Reusing PA Load Inductor for WSNs Applications
Abstract
:1. Introduction
2. Proposed Front-End with RX Matching Network Reusing PA Load Inductor
2.1. PA and PA Matching Network
2.2. LNA and LNA Matching Network
2.3. The Summarized Merits of this Proposed Frond-End
3. Transceiver Circuit Implementation
3.1. Transceiver Architecture
3.2. Down Conversion
3.3. LPF and ADC
3.4. Synthesizer
4. Measurement Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abbas, Z.; Yoon, W. A Survey on Energy Conserving Mechanisms for the Internet of Things: Wireless Networking Aspects. Sensors 2015, 15, 24818–24847. [Google Scholar] [CrossRef] [PubMed]
- Cerruela, G.G.; Luque, R.I.; Gómeznieto, M.Á. State of the Art, Trends and Future of Bluetooth Low Energy, Near Field Communication and Visible Light Communication in the Development of Smart Cities. Sensors 2016, 16, 1968. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, S.; Vidal, R.; Gomez, C. Opportunistic Sensor Data Collection with Bluetooth Low Energy. Sensors 2017, 17, 159. [Google Scholar] [CrossRef] [PubMed]
- Bluetooth, S.I.G. Bluetooth Specification, Version 4.2. Available online: https://www.bluetooth.org/en-us/specification/adopted-specifications (accessed on 18 April 2017).
- Eldesouki, M.M.; Qasim, S.M.; Bensaleh, M.S.; Deen, M.J. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications. Sensors 2015, 15, 10791–10805. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.; Krizhanovskii, V.; Lee, J.; Han, S.K. A Low-Power RF Direct-Conversion Receiver/Transmitter for 2.4-GHz-Band IEEE 802.15.4 Standard in 0.18-μm, CMOS Technology. IEEE Trans. Microw. Theory Tech. 2006, 54, 4062–4071. [Google Scholar] [CrossRef]
- Weber, D.; Si, W.; Abdollahi-Alibeik, S.; Lee, M.L. A Single-Chip CMOS Radio SoC for v2.1 Bluetooth Applications. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008; pp. 364–620. [Google Scholar]
- Mekanand, P.; Prawatrungruang, P.; Eungdamrong, D. 0.5 μ CMOS 2.4 GHz RF-switch for wireless communications. In Proceedings of the IEEE International Conference on Advanced Communication Technology, Gangwon-Do, Korea, 17–18 February 2008; pp. 447–450. [Google Scholar]
- Tan, C.G.; Song, F.; Zheng, R.; Cui, J. An Ultra-Low-Cost High-Performance Bluetooth SoC in 0.11-um CMOS. IEEE J. Solid State Circuits 2012, 47, 2665–2677. [Google Scholar] [CrossRef]
- Si, W.; Weber, D.; Abdollahi-Alibeik, S.; Lee, M.L. A Single-Chip CMOS Bluetooth v2.1 Radio SoC. IEEE J. Solid State Circuits 2008, 43, 2896–2904. [Google Scholar] [CrossRef]
- Marholev, B.; Pan, M.; Chien, E.; Zhang, L. A Single-Chip Bluetooth EDR Device in 0.13 μm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 11–15 February 2007; pp. 558–759. [Google Scholar]
- Kuo, F.W.; Ferreira, S.B.; Babaie, M.; Chen, R.; Cho, L. A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75 mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter. In Proceedings of the IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar]
- Fu, C.T.; Lakdawala, H.; Taylor, S.S.; Soumyanath, K. A 2.5 GHz 32 nm 0.35 mm2 3.5 dB NF −5 dBm P1 dB fully differential CMOS push-pull LNA with integrated 34 dBm T/R switch and ESD protection. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 56–58. [Google Scholar]
- Liu, X.; Mok, P.K.T.; Jiang, J.; Ki, W.H. Analysis and Design Considerations of Integrated 3-Level Buck Converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 671–682. [Google Scholar] [CrossRef]
- Liu, X.; Huang, C.; Mok, P.K.T. A 50 MHz 5 V 3 W 90% efficiency 3-level buck converter with real-time calibration and wide output range for fast-DVS in 65 nm CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC), Honolulu, HI, USA, 15–17 June 2016; pp. 1–2. [Google Scholar]
- Liu, X.; Zhang, H. A 2.4 V 23.9 dBm 35.7%-PAE-32.1 dBc-ACLR LTE-20MHz Envelope-Shaping-and-Tracking System with a Multiloop-Controlled AC-Coupling Supply Modulator and a Mode-Switching PA. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 5–9 February 2017; pp. 38–39. [Google Scholar]
- Taris, T.; Mabrouki, A.; Kraimia, H.; Deval, Y. Reconfigurable Ultra Low Power LNA for 2.4 GHz Wireless Sensor Networks. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems, Athens, Greece, 12–15 December 2010; pp. 74–77. [Google Scholar]
- Song, T.; Oh, H.S.; Yoon, E.; Hong, S. A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network. IEEE J. Solid State Circuits 2007, 42, 1012–1022. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K.H.; Zhao, D.; Dai, L. A CMOS Bluetooth radio transceiver using a sliding-IF architecture. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 21–24 September 2003; pp. 455–458. [Google Scholar]
- Zhang, L.; Jiang, H.; Wei, J.; Dong, J. A reconfigurable sliding-if transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21% tuning range VCO. IEEE J. Solid State Circuits 2013, 48, 2705–2716. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ba, A.; Van den Heuvel, J.H.C.; Philips, K. A 1.2 nJ/bit 2.4 GHz Receiver with a Sliding-IF Phase-to-Digital Converter for Wireless Personal/Body Area Networks. IEEE J. Solid State Circuits 2014, 49, 3005–3017. [Google Scholar] [CrossRef]
- Masuch, J.; Delgado-Restituto, M. A 1.1-mW-RX, -dBm Sensitivity CMOS Transceiver for Bluetooth Low Energy. IEEE Trans. Microw. Theory Tech. 2013, 61, 1660–1673. [Google Scholar] [CrossRef]
- Gil, J.; Kim, J.H.; Kim, C.S.; Park, C. A Fully Integrated Low-Power High-Coexistence 2.4-GHz ZigBee Transceiver for Biomedical and Healthcare Applications. IEEE Trans. Microw. Theory Tech. 2014, 62, 1879–1889. [Google Scholar] [CrossRef]
- Liu, Y.H.; Bachmann, C.; Wang, X.; Zhang, Y. A 3.7mW-RX 4.4 mW-TX fully integrated Bluetooth Low-Energy/IEEE802.15.4/proprietary SoC with an ADPLL-based fast frequency offset compensation in 40 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 22–26 February 2015; Volume 13, pp. 1–3. [Google Scholar]
- Sano, T.; Mizokami, M.; Matsui, H.; Ueda, K. A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 22–26 February 2015; Volume 13, pp. 1–3. [Google Scholar]
- Huang, M.; Chen, D.H.; Wang, Z.; Guo, J.; Dagher, E.H. A power-area-efficient, 3-band, 2-RX MIMO, TD-LTE receiver with direct-coupled ADC. Int. J. Circuit Theory Appl. 2015, 43, 806–821. [Google Scholar] [CrossRef]
- Retz, G.; Shanan, H.; Mulvaney, K.; O’Mahony, S. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18 µm CMOS for IEEE 802.15.4 WPAN. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 8–12 February 2009; pp. 414–415. [Google Scholar]
- Pipino, A.; Liscidini, A.; Wan, K.; Baschirotto, A. Bluetooth low energy receiver system design. In Proceedings of the IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 24–27 May 2015; pp. 465–468. [Google Scholar]
- Kwon, Y.I.; Park, S.G.; Park, T.J.; Cho, K.S. An Ultra Low-Power CMOS Transceiver Using Various Low-Power Techniques for LR-WPAN Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 324–336. [Google Scholar] [CrossRef]
- Huang, M.; Chen, D.H.; Guo, J.P.; Xu, K. A tri-band, 2-RX MIMO, 1-TX TD-LTE CMOS transceiver. Microelectron. J. 2015, 46, 59–66. [Google Scholar] [CrossRef]
- Razavi, B. A study of injection locking and pulling in oscillators. IEEE Int. J. Solid State Circuits 2004, 39, 1415–1424. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Li, C.J.; Wang, F.K.; Horng, T.S. Analysis and Improvement of Direct-Conversion Transmitter Pulling Effects in Constant Envelope Modulation Systems. IEEE Trans. Microw. Theory Tech. 2012, 58, 4137–4146. [Google Scholar] [CrossRef]
- Huang, M.; Chen, D.; Guo, J.; Ye, H. A CMOS Delta-Sigma PLL Transmitter with Efficient Modulation Bandwidth Calibration. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1716–1725. [Google Scholar]
- Prummel, J.; Papamichail, M.; Willms, J.; Todi, R. A 10 mW Bluetooth Low-Energy Transceiver with On-Chip Matching. IEEE Int. J. Solid State Circuits 2015, 50, 3077–3088. [Google Scholar]
- Babaie, M.; Kuo, F.W.; Chen, H.N.R.; Cho, L.C. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS with 36% System Efficiency at 3 dBm. IEEE J. Solid State Circuits 2016, 51, 1–19. [Google Scholar] [CrossRef]
- ETSI. EN 300 328 V1.8.1. Available online: http://www.etsi.org/deliver/etsi_en/300300_300399/300328/01.08.01_60/en_300328v010801p.pdf (accessed on 18 April 2017).
- nRF8001 Preliminary Product Specification. Available online: https://wenku.baidu.com/view/6fc358c02cc58bd63186bdb5.html (accessed on 18 April 2017).
Test Mode | f1 (MHz) | f2 (MHz) | LO (MHz) | Pin (dBm) | Gain (dB) | Measured | Results |
---|---|---|---|---|---|---|---|
IIP3 | 2048.2 | 2051.1 | 2045 | −50 | 74 | PO3 = −41.8 dBm | IIP3 = −17.1 dBm |
IIP2 | 2048.5 | 2048.2 | 2045 | −50 | 74 | PO2 = −35.8 dBm | IIP2 = 9.8 dBm |
[37] nRF8001 | [10] JSSC2008 | [24] ISSCC2015 | [25] ISSCC2015 | [5] 1 Sensors2015 | [12] VLSI2016 | This Work | |
---|---|---|---|---|---|---|---|
Compliant standards | BLE | Bluetooth | BLE | BLE | BLE/Zigbee | BLE | BLE |
Data/chip rate & modulation | 1 Mbps GFSK BT = 0.5 | 1 Mbps GFSK BT = 0.32 | 1 Mbps GFSK BT = 0.5 | 1 Mbps GFSK BT = 0.5 | N.A. | 1 Mbps GFSK BT = 0.5 | 1 Mbps GFSK BT = 0.5 |
Technology | N.A. | 130 nm | 40 nm | 40 nm | 180 nm | 28 nm | 110 nm |
Number of inductors | N.A. | 3 | 3 | 6 | 4 | 5 | 2 |
On chip TRX-switch | no | no | no | yes | no | yes | yes |
On chip matching network | no | no | no | yes | no | yes | yes |
PLL lock time (us) | 130 | N.A. | 15 | N.A. | N.A. | N.A. | 32 |
RX sensitivity (dBm) | −87 | −92 | −94 | −94.5 | N.A. | −95 | −93 |
RX IIP3 (dBm) | N.A. | N.A. | N.A. | N.A. | −19 | −19 | −17.1 |
TX max. Pout (dBm) | +4 | +3 | −2 | 0 | N.A. | +3 | +2 |
FSK error | N.A. | N.A. | 4.8% | N.A. | N.A. | N.A. | 2.97% |
RX Power (mW) | 27 | 36 | 3.3 | 6.3 | 6.74 | 2.75 | 9.7 |
TX Power (mW) | 21 @0 dBm | 33 @2 dBm | 4.2 @−2 dBm | 7.7 @0 dBm | N.A. | 3.6 @0 dBm | 9.4 @0 dBm |
Front-end area (mm2) | N.A. | 1.3 2 | 0.5 2 | 0.6 2 | 2.08 | 1.5 2 | 0.24 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Li, B.; Huang, M.; Zheng, Y.; Ye, H.; Xu, K.; Deng, F. A Low Cost BLE Transceiver with RX Matching Network Reusing PA Load Inductor for WSNs Applications. Sensors 2017, 17, 895. https://doi.org/10.3390/s17040895
Liang Z, Li B, Huang M, Zheng Y, Ye H, Xu K, Deng F. A Low Cost BLE Transceiver with RX Matching Network Reusing PA Load Inductor for WSNs Applications. Sensors. 2017; 17(4):895. https://doi.org/10.3390/s17040895
Chicago/Turabian StyleLiang, Zhen, Bin Li, Mo Huang, Yanqi Zheng, Hui Ye, Ken Xu, and Fangming Deng. 2017. "A Low Cost BLE Transceiver with RX Matching Network Reusing PA Load Inductor for WSNs Applications" Sensors 17, no. 4: 895. https://doi.org/10.3390/s17040895
APA StyleLiang, Z., Li, B., Huang, M., Zheng, Y., Ye, H., Xu, K., & Deng, F. (2017). A Low Cost BLE Transceiver with RX Matching Network Reusing PA Load Inductor for WSNs Applications. Sensors, 17(4), 895. https://doi.org/10.3390/s17040895