PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices
Abstract
:1. Introduction
2. Pyroelectric Sensor Design
2.1. Device Fabrication
2.2. Pyroelectric Charge Generation
2.3. Charge Amplifier
2.4. Heat Transfer Process
3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
| SOC | System-On-a-Chip |
| PVDF | Polyvinylidene-Fluoride |
| PZT | Lead Zirconate Titanate |
| PMMA | Poly(methyl methacrylate) |
| IR | Infrared |
| LED | Light Emitting Diode |
| CMOS | Complementary Metal Oxide Semiconductor |
References
- Ghallab, Y.H.; El-Hamid, H.A.; Ismail, Y. Lab on a Chip Based on CMOS Technology: System Architectures, Microfluidic Packaging, and Challenges. IEEE Des. Test 2015, 32, 20–31. [Google Scholar] [CrossRef]
- Kubicki, W.; Walczak, R.; Dziuban, J.A. Miniature instrument for lab-on-a-chip capillary gel electrophoresis of DNA utilizing temperature control technique. In Proceedings of the Eurosensors XXV, Athens, Greece, 4–7 September 2011; pp. 1237–1240. [Google Scholar]
- Cao, J.; Cui, F.; Chen, W.; Guo, Z.; Chen, W. Analysis on PCR chip with reusable electrodes and its temperature field. Bandaoti Guangdian Semicond. Optoelectron. 2015, 38, 725–727, 732. [Google Scholar]
- Wu, Z.Y.; Chen, K.; Qu, B.Y.; Tian, X.X.; Wang, X.J.; Fang, F. A thermostat chip of indium tin oxide glass substrate for static polymerase chain reaction and in situ real time fluorescence monitoring. Anal. Chim. Acta 2008, 610, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Quijada, J.; Caverhill-Godkewitsch, S.; Reynolds, M.; Gutierrez-Rivera, L.; Johnstone, R.W.; Elliott, D.G.; Sameoto, D.; Backhouse, C.J. Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems. Sens. Actuators A Phys. 2013, 193, 170–181. [Google Scholar] [CrossRef]
- Li, P.; Lei, N.; Sheadel, D.A.; Xu, J.; Xue, W. Integration of nanosensors into a sealed microchannel in a hybrid lab-on-a-chip device. Sens. Actuators B Chem. 2012, 166–167, 870–877. [Google Scholar] [CrossRef]
- Kandlikar, S.G. History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review. J. Heat Transf. 2012, 134, 3. [Google Scholar] [CrossRef]
- Jurków, D.; Roguszczak, H.; Golonka, L. Novel cold chemical lamination bonding technique—A simple LTCC thermistor-based flow sensor. J. Ceram. Soc. 2009, 29, 1971–1976. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Ye, H.; Peng, Y.; Shu, C.; Yang, C.; Zhang, W.; He, H. A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Opt. Commun. 2015, 339, 1–6. [Google Scholar] [CrossRef]
- Donner, J.S.; Thompson, S.A.; Kreuzer, M.P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein-from in vitro to in vivo. In Proceedings of the Optical Molecular Probes, Imaging and Drug Delivery, OMP 2013, Waikoloa Beach, HI, USA, 14–18 April 2013. [Google Scholar]
- Tanimoto, R.; Hiraiwa, T.; Nakai, Y.; Shindo, Y.; Oka, K.; Hiroi, N.; Funahashi, A. Detection of Temperature Difference in Neuronal Cells. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Bergaud, C. Thermometry in micro and nanofluidics. In Thermometry at the Nanoscale: Techniques and Selected Applications; Carlos, L.D., Palacio, F., Eds.; Royal Society of Chemistry: London, UK, 2016; Volume 2016, pp. 461–492. [Google Scholar]
- Puddu, M.; Mikutis, G.; Stark, W.J.; Grass, R.N. Submicrometer-Sized Thermometer Particles Exploiting Selective Nucleic Acid Stability. Small 2016, 12, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Measurement Specialties Inc. Piezo Film Sensors Technical Manual. Available online: https://www.sparkfun.com/datasheets/Sensors/Flex/MSI-techman.pdf (accessed on 31 August 2016).
- Sarker, M.R.H.; Karim, H.; Martinez, R.; Delfin, D.; Enriquez, R.; Ishtiaque Shuvo, M.A.; Love, N.; Lin, Y. Temperature measurements using a lithium niobate (LiNbO3) pyroelectric ceramic. Measurement 2015, 75, 104–110. [Google Scholar] [CrossRef]
- Maiolo, L.; Maita, F.; Pecora, A.; Rapisarda, M.; Mariucci, L.; Benwadih, M.; Jacob, S.; Chartier, I.; Coppard, R. Flexible PVDF-TrFE pyroelectric sensor integrated on a fully printed p-channel organic transistor. Procedia Eng. 2012, 47, 526–529. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Correia, R.G.; Rocha, J.G.; Lanceros-Mendéz, S.; Minas, G. Design and fabrication of piezoelectric microactuators based on β-poly(vinylidene fluoride) films for microfluidic applications. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Pullano, S.A.; Perozziello, G.; Di Fabrizio, E.; Fiorillo, A.S. Pyroelectric PVDF transducer for temperature measurements in fluidic micro-channels. In Proceedings of the E-Health and Bioengineering Conference (EHB), Iasi, Romania, 1–4 November 2011. [Google Scholar]
- Pullano, S.A.; Fiorillo, A.S.; Islam, S.K. A pyroelectric sensor for system-on-a-chip. In Proceedings of the 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 1–2 April 2014. [Google Scholar]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric Sensor for Monitoring the Temperature of Biological Fluids in Micro Channel Devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Sung, M.; Shin, K.; Moon, W. A new transduction mechanism for hydrophones employing piezoelectricity and a field-effect transistor. Sen. Actuators A Phys. 2015, 233, 557–568. [Google Scholar] [CrossRef]
- Peng, G.; Zhao, X.; Zhan, Z.; Ci, S.; Wang, Q.; Liang, Y.; Zhao, M. New crystal structure and discharge efficiency of poly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RCS Adv. 2014, 4, 16849–16854. [Google Scholar] [CrossRef]
- Beuville, E.; Buytaert, S.; Cerri, C.; Jarron, P. Low Noise Analog CMOS Signal Processor with a Large Dynamic Range for Silicon Calorimeters. Nucl. Phys. B Proc. Suppl. 1991, 23, 198–206. [Google Scholar] [CrossRef]
- Junnila, S.; Akbhardeh, A.; Varri, A. An Electromechanical Film Sensor Based Wireless Ballistocardiographic Chair: Implementation and Performance. J. Signal Proc. Syst. 2009, 57, 305–320. [Google Scholar] [CrossRef]
- Sultana, A.; Reznik, A.; Karim, K.S.; Rowlands, J.A. Design and Feasibility of Active Matrix Flat Panel Detector Using Avalanche Amorphous Selenium for Protein Crystallography. Med. Phys. 2008, 35, 4324–4332. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Sarkar, P.K.; Aggarwal, L.; Ghosh, S.K.; Mandal, D.; Sheet, G.; Acharya, S. Self-oriented β-crystalline phase in the polyvinylidene fluoride ferroelectric and piezo-sensitive ultrathin Langmuir-Schaefer film. Phys. Chem. Chem. Phys. 2015, 17, 8159–8165. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-J.; Tian, W.-C.; Wu, W.-J. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring. Sensors 2013, 13, 5478–5492. [Google Scholar] [CrossRef] [PubMed]
- Zammit, U.; Marinelli, M.; Mercuri, F.; Paoloni, S.; Scudieri, F. Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions. Rev. Sci. Instrum. 2011, 82, 12. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.B. Pyroelectricity: Form ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 8. [Google Scholar] [CrossRef]
- Touayar, O.; Sifi, N.; Ben Brahim, J. Theoretical and experimental study of power radiometric measurements using a pyroelectric current integrator converter. Sens. Actuators A Phys. 2006, 135, 484–491. [Google Scholar] [CrossRef]
- Shao, X.; Ding, J.; Ma, X.; Yu, Y.; Fang, J. Document Design and thermal analysis of electrically calibrated pyroelectric detector. Infrared Phys. Technol. 2012, 55, 45–48. [Google Scholar] [CrossRef]
- Chirtoc, M.; Bentefour, E.H.; Antoniow, J.S.; Glorieux, C.; Thoen, J.; Delenclos, S.; Sahraoui, A.H.; Longuemart, S.; Kolinsky, C.; Buisine, J.M. Current mode versus voltage mode measurement of signals from pyroelectric sensors. Rev. Sci. Instrum. 2003, 74, 648–650. [Google Scholar] [CrossRef]
- Gilber, B. Current Mode, Voltage Mode, or Free Mode? A Few Sage Suggestion. Analog Integr. Circuits Signal Proc. 2004, 38, 83–101. [Google Scholar] [CrossRef]
- Kester, W.; Bryant, J.; Jung, W.; Wurcer, S.; Kitchin, C. Sensor Signal Conditioning. In Op Amp Applications Handbook; Jung, W.G., Ed.; Analog Device Series: Norwood, MA, USA, 2004. [Google Scholar]
- López-Martin, A.J.; Massarotto, M.; Carlosena, A. Performance tradeoffs of integrated CMOS charge amplifiers. In Proceedings of the IEEE Sensors 2009 Conference, Christchurch, New Zealand, 25–28 October 2009. [Google Scholar]
- Lubomirsky, I.; Stafsudd, O. Invited Review Article: Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 2012, 83, 051101. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.F.; Young, M.S. Pyroelectric infrared sensor-based thermometer for monitoring indoor objects. Rev. Sci. Instrum. 2003, 74, 12. [Google Scholar] [CrossRef]
- Yoon, H.W.; Eppeldauer, G.P. Radiation Thermometer Designs, in: Radiometric Temperature Measurements. Exp. Methods Phys. Sci. 2009, 42, 133–180. [Google Scholar]
- Querner, Y.; Norkus, V.; Gerlach, G. High-sensitive Pyroelectric detectors with internal thermal amplification. Sens. Actuators A Phys. 2011, 172, 169–174. [Google Scholar] [CrossRef]
- Campanella, H.; Narducci, M.; Soon, J.B.W.; Merugu, S.; Ferrari, M.; Ferrari, V.; Singh, N. Multi-sensitive temperature sensor platforms using aluminum nitride MEMS resonators. J. Micromech. Microeng. 2015, 25, 1–12. [Google Scholar] [CrossRef]
- DeWitt, D.P.; Nutter, G.D. Theory and Practice of Radiation Thermometry; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- Buchanan, R.; Huang, J. Pyroelectric and sensor properties of ferroelectric thin films for energy conversion. J. Eur. Ceram. Soc. 1999, 19, 1467–1471. [Google Scholar] [CrossRef]
- Cuadras, M.; Gasulla Ferrari, V. Thermal energy harvesting through pyroelectricity. Sens. Actuators A Phys. 2010, 158, 132–139. [Google Scholar] [CrossRef]
- Ravindran, S.K.T.; Huesgen, T.; Kroener, M.; Woias, P. A Self-Sustaining Pyroelectric Energy Harvester Utilizing Spatial Thermal Gradients. In Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11, Beijing, China, 5–9 June 2011. [Google Scholar]
- Chang, H.H.S.; Huang, Z. Laminate composites with enhanced pyroelectric effects for energy harvesting. Smart Mater. Struct. 2010, 19, 1. [Google Scholar] [CrossRef]
- Mane, P.; Xie, J.; Leang, K.; Mossi, K. Cyclic energy harvesting from pyroelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sebald, G.; Lefeuvre, E.; Guyomar, D. Pyroelectric energy conversion: Optimization principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 538–551. [Google Scholar] [CrossRef] [PubMed]
- ADInstruments. Available online: http://m-cdn.adinstruments.com/product-data-cards/MLT1402-DCW-15A.pdf (accessed on 16 May 2016).








| Value | ||
|---|---|---|
| Active surface [A] | 10−6 | [m2] |
| Thermal capacitance [Cth] | 32 × 10−6 | [J·K−1] |
| Absorption coefficient [α] | 0.7 | |
| Irradiance [I] | 10−3 | [W·m−2] |
| Surface emissivity [δ] | 0.7 | |
| Stefan–Boltzmann constant [σ] | 5.67 × 10−8 | [W·m−2·K−4] |
| PVDF specific heat [cp] | 1.4 × 103 | [J·kg−1·K−1] |
| PVDF thermal conductivity [Rth−1] | 0.2 | [W·m−1·K−1] |
| Technology | Response Time [s] | Dimensions [mm] | Temp. Range [°C] | Reference |
|---|---|---|---|---|
| PZT | 5 | 1.2 × 10−3 | 80–110 | [42] |
| PZT | 0.00875 | 1.6 × 10−3 | 31–62 | [43] |
| PZT | 0.42 | 0.15 | 14–93.5 | [44] |
| LiTaO3 | 0.01 | 5.21 × 10−2 | 27–37 | [45] |
| PMN-30PT | 0.1 | 8.64 × 10−3 | 32–40.4 | [46] |
| PMN-25PT | 1 | 3.76 | N/A | [47] |
| PVDF | 0.0032 | 0.25 | −40–65 | [14,20] |
| T-type Thermoc. | 0.005 | 0.22 | −273–150 | [48] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Mahbub, I.; Islam, S.K.; Fiorillo, A.S. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors 2017, 17, 850. https://doi.org/10.3390/s17040850
Pullano SA, Mahbub I, Islam SK, Fiorillo AS. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors. 2017; 17(4):850. https://doi.org/10.3390/s17040850
Chicago/Turabian StylePullano, Salvatore A., Ifana Mahbub, Syed K. Islam, and Antonino S. Fiorillo. 2017. "PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices" Sensors 17, no. 4: 850. https://doi.org/10.3390/s17040850
APA StylePullano, S. A., Mahbub, I., Islam, S. K., & Fiorillo, A. S. (2017). PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices. Sensors, 17(4), 850. https://doi.org/10.3390/s17040850
