Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording
Abstract
:1. Introduction
2. Experimental Setup
2.1. Silicon Nanowire Field-Effect Transistors (SiNW FETs)
2.2. Low-Noise Transimpedance Amplifier (TIA) for SiNW FETs
2.3. Passive MEA System
2.4. Artificial Neuron Signal Measurement Setup
3. Results
3.1. Spike Signal Recording Measurement
3.2. Intrinsic Noise of SiNW FETs
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kang, H.; Nam, Y. In Vitro Neural Recording by Microelectrode Arrays. In Stretchable Bioelectronics for Medical Devices and Systems; Rogers, J.A., Ghaffari, R., Kim, D.-H., Eds.; Microsystems and Nanosystems; Springer: New York, NY, USA, 2016; pp. 275–291. [Google Scholar]
- Fekete, Z. Recent advances in silicon-based neural microelectrodes and microsystems: A review. Sens. Actuators B Chem. 2015, 215, 300–315. [Google Scholar] [CrossRef]
- Kim, R.; Joo, S.; Jung, H.; Hong, N.; Nam, Y. Recent trends in microelectrode array technology for in vitro neural interface platform. Biomed. Eng. Lett. 2014, 4, 129–141. [Google Scholar] [CrossRef]
- Hierlemann, A.; Frey, U.; Hafizovic, S.; Heer, F. Growing Cells Atop Microelectronic Chips: Interfacing Electrogenic Cells in vitro with CMOS-Based Microelectrode Arrays. Proc. IEEE 2011, 99, 252–284. [Google Scholar] [CrossRef]
- Müller, J.; Ballini, M.; Livi, P.; Chen, Y.; Radivojevic, M.; Shadmani, A.; Viswam, V.; Jones, I.L.; Fiscella, M.; Diggelmann, R.; et al. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 2015, 15, 2767–2780. [Google Scholar] [CrossRef] [PubMed]
- Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E.S.; Blanco, J.; Kim, Y.-S.; Avrin, A.E.; Tiruvadi, V.R.; Hwang, S.-W.; Vanleer, A.C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Viswam, V.; Dragas, J.; Shadmani, A.; Chen, Y.; Stettler, A.; Müller, J.; Hierlemann, A. 22.8 Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 394–396. [Google Scholar]
- Qing, Q.; Pal, S.K.; Tian, B.; Duan, X.; Timko, B.P.; Cohen-Karni, T.; Murthy, V.N.; Lieber, C.M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. USA 2010, 107, 1882–1887. [Google Scholar] [CrossRef] [PubMed]
- Timko, B.P.; Cohen-Karni, T.; Yu, G.; Qing, Q.; Tian, B.; Lieber, C.M. Electrical Recording from Hearts with Flexible Nanowire Device Arrays. Nano Lett. 2009, 9, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Karni, T.; Timko, B.P.; Weiss, L.E.; Lieber, C.M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 7309–7313. [Google Scholar] [CrossRef] [PubMed]
- Fendyur, A.; Spira, M.E. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front. Neuroeng. 2012, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Meyburg, S.; Goryll, M.; Moers, J.; Ingebrandt, S.; Böcker-Meffert, S.; Lüth, H.; Offenhäusser, A. N-Channel field-effect transistors with floating gates for extracellular recordings. Biosens. Bioelectron. 2006, 21, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Park, J.E.; Shin, J.K.; Kim, P.K.; Lim, G.; Shoji, S. An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuators B Chem. 2006, 117, 488–494. [Google Scholar] [CrossRef]
- Chi, L.L.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Study on extended gate field effect transistor with tin oxide sensing membrane. Mater. Chem. Phys. 2000, 63, 19–23. [Google Scholar] [CrossRef]
- Offenhäusser, A.; Ingebrandt, S.; Pabst, M.; Wrobel, G. Interfacing Neurons and Silicon-Based Devices. In Nanobioelectronics—For Electronics, Biology, and Medicine; Offenhäusser, A., Rinaldi, R., Eds.; Nanostructure Science and Technology; Springer: New York, NY, USA, 2009; pp. 287–301. [Google Scholar]
- Cohen, A.; Spira, M.E.; Yitshaik, S.; Borghs, G.; Shwartzglass, O.; Shappir, J. Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons. Biosens. Bioelectron. 2004, 19, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.I.; Kim, J.Y.; Jang, H.; Hong, H.J.; Kim, C.K.; Oh, J.S.; Kang, M.H.; Kim, J.W.; Choi, Y.K. A Novel FinFET With High-Speed and Prolonged Retention for Dynamic Memory. IEEE Electron Device Lett. 2014, 35, 1236–1238. [Google Scholar] [CrossRef]
- Asano, K.; Choi, Y.-K.; King, T.-J.; Hu, C. Patterning sub-30-nm MOSFET gate with i-line lithography. IEEE Trans. Electron Devices 2001, 48, 1004–1006. [Google Scholar] [CrossRef]
- Kim, R.; Nam, Y. Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. J. Neural Eng. 2015, 12, 26010. [Google Scholar] [CrossRef] [PubMed]
- Lewicki, M.S. A review of methods for spike sorting: The detection and classification of neural action potentials. Netw. Comput. Neural Syst. 1998, 9, R53–R78. [Google Scholar] [CrossRef]
- Watkins, P.T.; Santhanam, G.; Shenoy, K.V.; Harrison, R.R. Validation of adaptive threshold spike detector for neural recording. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, IEMBS ’04, San Francisco, CA, USA, 1–5 September; 2004; Volume 2, pp. 4079–4082. [Google Scholar]
- Borghi, T.; Gusmeroli, R.; Spinelli, A.S.; Baranauskas, G. A simple method for efficient spike detection in multiunit recordings. J. Neurosci. Methods 2007, 163, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Timko, B.P.; Patolsky, F.; Lieber, C.M. Response to Comment on “Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays.”. Science 2009, 323, 1429. [Google Scholar] [CrossRef]
- Tian, B.; Cohen-Karni, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C.M. Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes. Science 2010, 329, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Bedner, K.; Guzenko, V.A.; Tarasov, A.; Wipf, M.; Stoop, R.L.; Rigante, S.; Brunner, J.; Fu, W.; David, C.; Calame, M.; Gobrecht, J.; Schönenberger, C. Investigation of the dominant 1/f noise source in silicon nanowire sensors. Sens. Actuators B Chem. 2014, 191, 270–275. [Google Scholar] [CrossRef]
- Baek, R.-H.; Baek, C.-K.; Choi, H.-S.; Lee, J.-S.; Yeoh, Y.Y.; Yeo, K.H.; Kim, D.-W.; Kim, K.; Kim, D.M.; Jeong, Y.-H. Characterization and Modeling of 1/Noise in Si-nanowire FETs: Effects of Cylindrical Geometry and Different Processing of Oxides. IEEE Trans. Nanotechnol. 2011, 10, 417–423. [Google Scholar] [CrossRef]
- Mukherjee, C.; Maiti, C.K. Silicon Nanowire FinFETs. In Nanowires—Recent Advances; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Shmoel, N.; Rabieh, N.; Ojovan, S.M.; Erez, H.; Maydan, E.; Spira, M.E. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes. Sci. Rep. 2016, 6, 27110. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.K.; Ko, P.K.; Hu, C.; Cheng, Y.C. A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. Electron Devices IEEE Trans. 1990, 37, 654–665. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, C. Noise Model. In Mosfet Modeling & BSIM3 User’s Guide; Springer: New York, NY, USA, 2002; pp. 219–241. [Google Scholar]
Symbol | Quantity | Value |
---|---|---|
L | Transistor length | 130 nm |
W | Transistor width | 50–78 nm |
tox | Gate oxide thickness | 5 nm |
Cox | Areal gate capacitance | 0.69 µF/cm2 |
Cox × LW | Gate capacitance | 45–70 aF |
tSi | Thickness of Si body | 50 nm |
SS | Subthreshold swing | 71 mV/dec |
DIBL | Drain-induced barrier lowering | 0.04 V/V |
VT | Threshold voltage | −0.18 V |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Kim, J.-Y.; Choi, Y.-K.; Nam, Y. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording. Sensors 2017, 17, 705. https://doi.org/10.3390/s17040705
Kang H, Kim J-Y, Choi Y-K, Nam Y. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording. Sensors. 2017; 17(4):705. https://doi.org/10.3390/s17040705
Chicago/Turabian StyleKang, Hongki, Jee-Yeon Kim, Yang-Kyu Choi, and Yoonkey Nam. 2017. "Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording" Sensors 17, no. 4: 705. https://doi.org/10.3390/s17040705
APA StyleKang, H., Kim, J.-Y., Choi, Y.-K., & Nam, Y. (2017). Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording. Sensors, 17(4), 705. https://doi.org/10.3390/s17040705