Precise GNSS Positioning Using Smart Devices
Abstract
:1. Introduction
2. Experiment
2.1. Hardware Setup
- a Nexus 9 tablet (NEX9);
- a u-blox receiver (UBNX);
- a Trimble receiver, 13.7 m baseline (GRTR);
- a SPIN VRS, 13.7 m baseline (GRVR);
- a GeoGuard GMU, 15 m baseline (GRED);
- a SPIN VRS, 4 km baseline (VR4K);
- the CATU NetGeo CORS, 8 km baseline (CATU).
2.2. GNSS Data Processing
2.3. Experimental Results and Conclusions
3. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Heunecke, O.; Glabsch, J.; Schuhbaeck, S. Landslide Monitoring Using Low Cost GNSS Equipment-Experiences from Two Alpine Testing Sites. J. Civ. Eng. Archit. 2011, 5, 661–669. [Google Scholar]
- Buchli, B.; Sutton, F.; Beutel, J. GPS-equipped wireless sensor network node for high-accuracy positioning applications. In Wireless Sensor Networks; Picco, G., Heinzelman, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 179–195. [Google Scholar]
- Benoit, L.; Briole, P.; Martin, O.; Thom, C. Real-time deformation monitoring by a wireless network of low-cost GPS. J. Appl. Geodesy 2014, 8, 1–10. [Google Scholar] [CrossRef]
- Cina, A.; Piras, M. Performance of low-cost GNSS receiver for landslides monitoring: Test and results. Geomat. Nat. Hazards Risk 2014, 6, 497–514. [Google Scholar] [CrossRef]
- Caldera, S.; Realini, E.; Barzaghi, R.; Reguzzoni, M.; Sansò, F. Experimental Study on Low-Cost Satellite-Based Geodetic Monitoring over Short Baselines. J. Surv. Eng. 2016, 142, 04015016. [Google Scholar] [CrossRef]
- Biagi, L.; Grec, F.C.; Negretti, M. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements. Sensors 2016, 16, 2140. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.; Caldera, S.; Capponi, M.; Realini, E. Geoguard-An Innovative Technology Based on Low-cost GNSS Receivers to Monitor Surface Deformations. In Proceedings of the First EAGE Workshop on Practical Reservoir Monitoring, Amsterdam, The Netherlands, 6–9 March 2017. [Google Scholar]
- Brovelli, M.A.; Minghini, M.; Zamboni, G. Public participation in GIS via mobile applications. ISPRS J. Photogramm. Remote Sens. 2016, 114, 306–315. [Google Scholar] [CrossRef]
- Pili, P.; Realini, E.; Sampietro, D.; Zedda, M.; Franzoni, E.; Magli, G. Topographical and Astronomical Analysis on The Neolithic “Altar” of Monte D’Accoddi In Sardinia. Mediterr. Archaeol. Archaeom. 2009, 9, 61–69. [Google Scholar]
- Magli, G.; Realini, E.; Reguzzoni, M.; Sampietro, D. High-Precision GPS Survey of Via Appia: Archaeoastronomy-related Aspects. Mediterr. Archaeol. Archaeom. 2014, 14, 55–65. [Google Scholar]
- Braitenberg, C.; Sampietro, D.; Pivetta, T.; Zuliani, D.; Barbagallo, A.; Fabris, P.; Rossi, L.; Fabbri, J.; Mansi, A.H. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark. Pure Appl. Geophys. 2016, 173, 1243–1264. [Google Scholar] [CrossRef]
- Yoshida, D.; Song, X.; Raghavan, V. Development of track log and point of interest management system using Free and Open Source Software. Appl. Geomat. 2010, 2, 123–135. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S.; Sama, M.P.; Stombaugh, T.S. Mobile Device-Based Location Services Accuracy. Appl. Eng. Agric. 2016, 32, 539–547. [Google Scholar]
- Pesyna, K.M.; Heath, R.W.; Humphreys, T.E. Accuracy in the Palm of Your Hand: Centimeter Positioning with a Smartphone-Quality GNSS Antenna. GPS World 2015, 26, 27–31. [Google Scholar]
- Malkos, S. User Location Takes Center Stage in New Android OS: Google to Provide Raw GNSS Measurements. GPS World 2016, 27, 36. [Google Scholar]
- PPP with Smartphones: Are We There Yet? Available online: https://www.blackdotgnss.com/2016/09/20/ppp-with-smartphones-are-we-there-yet/ (accessed on 11 August 2017).
- GNSS Carrier Phase from Nexus 9. Available online: http://rokubun.cat/2017/07/24/gnss-carrier-phase-nexus-9/ (accessed on 11 August 2017).
- Logging Of GNSS Raw Data On Android. Available online: http://www.geopp.de/logging-of-gnss-raw-data-on-android/ (accessed on 11 August 2017).
- Realini, E.; Reguzzoni, M. goGPS: Open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning. Meas. Sci. Technol. 2013, 24, 115010. [Google Scholar] [CrossRef]
- Herrera, A.M.; Suhandri, H.F.; Realini, E.; Reguzzoni, M.; de Lacy, M.C. goGPS: Open-Source MATLAB software. GPS Solut. 2016, 20, 595–603. [Google Scholar] [CrossRef]
- Realini, E.; Yoshida, D.; Reguzzoni, M.; Raghavan, V. Enhanced satellite positioning as a web service with goGPS open source software. Appl. Geomat. 2012, 4, 135–142. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, 325–331. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In The Use of Artificial Satellites for Geodesy; American Geophysical Union: Washington, DC, USA, 1972; pp. 247–251. [Google Scholar]
- Verhagen, S.; Li, B.; Geodesy, M. LAMBDA Software Package: Matlab Implementation; Version 3.0; Delft University of Technology: Delft, The Netherlands; Curtin University: Perth, Australia, 2012. [Google Scholar]
Reference Station | UBNX | NEX9 | ||||
---|---|---|---|---|---|---|
East | North | Up | East | North | Up | |
Average Coord. [m] | 502,747.189 | 5,060,416.944 | 308.819 | 502,746.993 | 5,060,417.073 | 308.809 |
GRTR [cm] | 0.0 | 0.3 | −1.7 | −0.5 | 0.2 | 0.1 |
GRVR [cm] | −0.1 | 0.4 | 0.9 | 1.7 | −0.3 | 2.0 |
GRED [cm] | 0.3 | −0.4 | 0.5 | −2.1 | 0.7 | −2.3 |
VR4K [cm] | −0.2 | 0.2 | 1.3 | 1.3 | −0.2 | 1.5 |
CATU [cm] | 0.0 | −0.6 | −1.0 | −0.4 | −0.5 | −1.3 |
Reference Station | UBNX | NEX9 | UBNX Fixed | |||
---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | |
GRTR [cm] | −0.1 | 3.4 | −0.6 | 4.8 | −0.1 | 0.3 |
GRVR [cm] | −0.2 | 9.4 | 0.3 | 8.8 | −0.1 | 0.4 |
GRED [cm] | −3.5 | 10.1 | −6.4 | 9.2 | −0.2 | 0.6 |
VR4K [cm] | −2.1 | 9.0 | −0.7 | 8.5 | −0.1 | 0.3 |
CATU [cm] | 0.3 | 3.5 | −0.4 | 8.0 | −0.1 | 0.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Realini, E.; Caldera, S.; Pertusini, L.; Sampietro, D. Precise GNSS Positioning Using Smart Devices. Sensors 2017, 17, 2434. https://doi.org/10.3390/s17102434
Realini E, Caldera S, Pertusini L, Sampietro D. Precise GNSS Positioning Using Smart Devices. Sensors. 2017; 17(10):2434. https://doi.org/10.3390/s17102434
Chicago/Turabian StyleRealini, Eugenio, Stefano Caldera, Lisa Pertusini, and Daniele Sampietro. 2017. "Precise GNSS Positioning Using Smart Devices" Sensors 17, no. 10: 2434. https://doi.org/10.3390/s17102434