Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology Characterization and Size Statistics
3.2. PL and PLE Spectral Characteristic
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Kim, U.; Kim, I.; Park, Y.; Lee, K.Y.; Yim, S.Y.; Park, J.G.; Ahn, H.G.; Park, S.H.; Choi, H.J. Synthesis of Si Nanosheets by a Chemical Vapor Deposition Process and Their Blue Emissions. ACS Nano 2011, 5, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Guo, L.; Chou, S.Y. Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 1998, 72, 1205–1207. [Google Scholar] [CrossRef]
- Cui, Y.; Lieber, C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899. [Google Scholar] [CrossRef] [PubMed]
- Erogbogbo, F.; Yong, K.T.; Roy, I.; Xu, G.; Prasad, P.N.; Swihart, M.T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008, 2, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Wolkin, M.V.; Jorne, J.; Fauchet, P.M. Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 1999, 82, 197–200. [Google Scholar] [CrossRef]
- Cullis, A.G.; Canham, L.T.; Calcott, P.D.J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 1997, 82, 909–965. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57 (Suppl. 10), 1046–1048. [Google Scholar] [CrossRef]
- Hao, X.J.; Podhorodecki, A.P.; Shen, Y.S.; Zatryb, G.; Misiewicz, J.; Green, M.A. Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films. Nanotechnology 2009, 20, 485703–485712. [Google Scholar] [CrossRef] [PubMed]
- Holunga, D.M.; Flagan, R.C.; Atwater, H.A. A scalable turbulent mixing aerosol reactor for oxide-coated silicon nanoparticles. Ind. Eng. Chem. Res. 2005, 44, 6332–6341. [Google Scholar] [CrossRef]
- Littau, K.A.; Szajowski, P.J.; Muller, A.J.; Kortan, A.R.; Brus, L.E. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 1993, 97, 1224–1230. [Google Scholar] [CrossRef]
- Lopez, J.A.L.; Roman, A.G.; Barojas, E.G.; Gracia, J.F.F.; Juarez, J.M.; Lopez, J.C. Synthesis of colloidal solutions with silicon nanocrystals from porous silicon. Nanoscale Res. Lett. 2014, 9, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Valenta, J.; Jenada, P.; Dohnalová, K.; Niznansky, D.; Vácha, F.; Linnros, J. Colloidal suspensions of silicon nanocrystals: From single nanocrystals to photonic structures. Opt. Mater. 2005, 27 (Suppl. 5), 1046–1049. [Google Scholar] [CrossRef]
- Tilley, R.D.; Warner, J.H.; Yamamoto, K.; Matsui, I.; Fujimori, H. Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 2005, 14, 1833–1835. [Google Scholar] [CrossRef] [PubMed]
- Umezu, I.; Minami, H.; Senoo, H.; Sugimura, A. Synthesis of photoluminescent colloidal silicon nanoparticles by pulsed laser ablation in liquids. J. Phys. 2007, 59 (Suppl. 1), 392–395. [Google Scholar] [CrossRef]
- Bagabas, A.A.; Gondal, M.A.; Dastageer, M.A.; Al-Muhanna, A.A.; Alanazi, T.H.; Ababtain, M.A. A study of laser-induced blue emission with nanosecond decay of silicon nanoparticles synthesized by a chemical etching method. Nanotechnology 2009, 20, 355703. [Google Scholar] [CrossRef] [PubMed]
- Yixuan, Y.; Clare, E.R.; Richard, D.S.; Brian, A.K. Synthesis and Ligand Exchange of Thiol-capped Silicon Nanocrystals. Langmuir 2015, 31, 6886–6893. [Google Scholar] [CrossRef]
- Ondic, L.; Varga, M.; Pelant, I.; Valenta, J.; Kromka, A.; Elliman, R.G. Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission. Sci. Rep. 2017, 7, 5763. [Google Scholar] [CrossRef] [PubMed]
- Svrcek, V.; McDonald, C.; Lozac’h, M.; Tayagaki, T.; Koganezawa, T.; Miyadera, T.; Mariotti, D.; Matsubara, K. Stable ultrathin surfactant-free surface-engineered silicon nanocrystal solar cells deposited at room temperature. Energy Sci. Eng. 2017, 5, 184–193. [Google Scholar] [CrossRef]
- Cheng, K.; Anthony, R.; Kortshagen, U.; Holmes, R. High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Lett. 2011, 11, 1952–1956. [Google Scholar] [CrossRef] [PubMed]
- Bruhn, B.; Brenny, B.J.M.; Dekker, S.; Dogan, I.; Schall, P.; Dohnalova, K. Multi-chromatic silicon nanocrystals. Light Sci. Appl. 2017, 6, e17007. [Google Scholar] [CrossRef]
- Chaabane, N.; Cabarrocas, P.R.; Vach, H. Trapping of plasma produced nanocrystalline Si particles on a low temperature substrate. J. Non-Cryst. Solids 2004, 338, 51–55. [Google Scholar] [CrossRef]
- Nayfeh, M.H.; Rao, S.; Nayfeh, O.M.; Smith, A.; Therrien, J. UV photodetectors with thin-film Si nanoparticle active medium. IEEE Trans. Nanotechnol. 2005, 4 (Suppl. 6), 660–668. [Google Scholar] [CrossRef]
- Erogbogbo, F.; Yong, K.T.; Hu, R.; Law, W.C.; Ding, H.; Chang, C.W.; Prasad, P.N.; Swihart, M.T. Biocompatible Magnetofluorescent Probes: Luminescent Silicon Quantum Dots Coupled with Superparamagnetic Iron(III) Oxide. ACS Nano 2010, 4, 5131–5138. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.M. New approaches for medicinal applications of bioinorganic chemistry. Curr. Opin. Chem. Biol. 2007, 11, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Beard, M.C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. Chem. Lett. 2011, 2, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, D.; Izeddin, I.; Stallinga, P.; Yassievich, I.N.; Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nat. Photonics 2008, 2, 105–109. [Google Scholar] [CrossRef]
- Yoffe, A.D. Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 2002, 51, 799–890. [Google Scholar] [CrossRef]
- Fuechsle, M.; Mahapatra, S.; Zwanenburg, F.; Friesen, M.; Eriksson, M.; Simmons, M. Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol. 2010, 5, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Bagolini, L.; Mattoni, A.; Fugallo, G.; Colomb, L. Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon. Phys. Rev. Lett. 2010, 104, 176803. [Google Scholar] [CrossRef] [PubMed]
- Beard, M.; Knutsen, K.P.; Yu, P.R.; Luther, J.M.; Song, Q.; Metzger, W.K.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 2007, 7, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Cibulka, O.; Vorkotter, C.; Purkrt, A.; Holovsky, J.; Benedikt, J.; Herynkova, K. Comparison of Silicon Nanocrystals Prepared by Two Fundamentally Different Methods. Nanoscale Res. Lett. 2016, 11, 445. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.C.; Tang, L.; Huang, J.D.; Voutsas, A.; Lin, L.Y. Visible electroluminescence from hybrid colloidal silicon quantum dot-organic light-emitting diodes. Appl. Phys. Lett. 2011, 98, 213102. [Google Scholar] [CrossRef]
- Gupta, A.; Swihart, M.; Wiggers, H. Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum. Adv. Funct. Mater. 2009, 19, 696–703. [Google Scholar] [CrossRef]
- Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.; Van Tendeloo, G.; Moshchalkov, V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Lu, Y.F.; Wu, Y.H.; Cho, B.J.; Liu, M.H.; Dai, D.Y.; Song, W.D. Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient. J. Appl. Phys. 2003, 93, 6311–6319. [Google Scholar] [CrossRef]
- Schmidt, J.U.; Schmidt, B. Investigation of Si nanocluster formation in sputter-deposited silicon sub-oxides for nanocluster memory structures. Mater. Sci. Eng. 2003, 101, 28–33. [Google Scholar] [CrossRef]
- Kusova, K.; Cibulka, O.; Dohnalova, K.; Pelant, I.; Valenta, J.; Fucikova, A.; Zidek, K.; Lang, J.; Englich, J.; Matejka, P.; et al. Brightly Luminescent Organically Capped Silicon Nanocrystals Fabricated at Room Temperature and Atmospheric Pressure. ACS Nano 2010, 4, 4495–4504. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Nakamura, T.; Adachi, S.; Matsuishi, K. Improvement of Laser Processing for Colloidal Silicon Nanocrystal Formation in a Reactive Solvent. J. Phys. Chem. Lett. 2017, 121, 8623–8629. [Google Scholar] [CrossRef]
- Nielsen, D.; Abdulhassan, L.; Alchihabi, M.; Al-Muhanna, A.; Host, J.; Nayfah, M.H. Current-less anodization of intrinsic silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 2007, 101, 114302. [Google Scholar] [CrossRef]
- Nozaki, T.; Sasaki, K.; Ogino, T.; Asahi, D.; Okazaki, K. Microplasma synthesis of tunable photoluminescent silicon nanocrystals. Nanotechnology 2007, 18, 235603. [Google Scholar] [CrossRef]
- Svrek, V.; Mariotti, D.; Kondo, M. Microplasma-induced surface engineering of silicon nanocrystals in colloidal dispersion. Appl. Phys. Lett. 2010, 97, 161502. [Google Scholar] [CrossRef]
- Zhang, Q.; Bayliss, S.C.; Hutt, D.A. Blue photoluminescence and local-structure of Si nanostructures embedded in SiO2 matrices. Appl. Phys. Lett. 1995, 66, 1977–1979. [Google Scholar] [CrossRef]
- Ray, M.; Hossain, S.M.; Klie, R.F.; Banerjee, K.; Ghosh, S. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions. Nanotechnology 2010, 21 (Suppl. 50), 505602. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.Z.; Wakimoto, R.; Saitow, K. Synthesis of Size-controlled Luminescent Si Nanocrystals from (HSiO1.5)(n) Polymers. Chem. Lett. 2017, 46, 699–702. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.L.; Li, T.H.; Chu, P.K. All-silicon solid films with highly efficient and tunable full-color photoluminescence. Scripta Mater. 2014, 76, 17–20. [Google Scholar] [CrossRef]
- Vanhellemont, J.; De Gryse, O.; Clauws, P. Critical precipitate size revisited and implications for oxygen precipitation in silicon. Appl. Phys. Lett. 2005, 86, 221903. [Google Scholar] [CrossRef]
- Heintz, A.; Fink, M.; Mitchell, B. Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv. Mater. 2007, 19, 3984. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Misiewicz, J.; Gourbilleau, F.; Rizk, R. Absorption mechanisms of silicon nanocrystals in cosputtered silicon-rich-silicon oxide films. Electrochem. Solid-State Lett. 2008, 11, K31–K33. [Google Scholar] [CrossRef]
- Zhou, Z.; Brus, L.; Friesner, R. Electronic structure and luminescence of1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogenpassivation. Nano Lett. 2003, 3, 163–167. [Google Scholar] [CrossRef]
- Kujala, J.; Slotte, J.; Tuomisto, F.; Hiller, D.; Zacharias, M. Si nanocrystals and nanocrystal interfaces studied by positron annihilation. J. Appl. Phys. 2016, 120, 145302. [Google Scholar] [CrossRef]
- Li, H.P.; Xu, H.; Shen, X.P.; Han, K.; Bi, Z.T.; Xu, R.F. Size-, electric- field-, and frequency-dependent third-order nonlinear optical properties of hydrogenated silicon nanoclusters. Sci. Rep. 2016, 6, 28067. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.K.; Liao, K.; Casillas, G.; Li, Y.Y.; Ozin, G.A. Cationic Silicon Nanocrystals with Colloidal Stability, pH-Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near-Infrared to Red Spectral Range. Adv. Sci. 2016, 3, 1500263. [Google Scholar] [CrossRef] [PubMed]
- Botas, A.M.P.; Anthony, R.J.; Wu, J.; Rowe, D.J.; Silva, N.J.O.; Kortshagen, U.; Pereira, R.N.; Ferreira, R.A.S. Influence of the surface termination on the light emission of crystalline silicon nanoparticles. Nanotechnology 2016, 27, 325703. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hessel, C.M.; Bogart, T.D.; Panthani, M.G.; Rasch, M.R.; Korgel, B. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes. Langmuir 2013, 29, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Ghosh, B.; Beaune, G.; Nagarajan, U.; Yasui, T.; Nakamura, J.; Tsuruoka, T.; Baba, Y.; Shirahata, N.; Winnik, F.M. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: Spectral evolution and tuning. Nanoscale 2016, 8, 9009–9019. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Sugimoto, H.; Imakita, K. All-inorganic colloidal silicon nanocrystals-surface modification by boron and phosphorus co-doping. Nanotechnology 2016, 27, 262001. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qian, C.X.; Chen, K.K.; Ozin, G.A. Silicon Nanocrystals: It’s Simply a Matter of Size. Chemnanomat 2016, 2, 847–855. [Google Scholar] [CrossRef]
- Han, P.G.; Poon, M.C.; Sin, K.O.; Wong, M. Photoluminescent porous polycrystalline silicon. In Proceedings of the Electron Devices Meeting, Clearwater Bay, Hong Kong, China, 1 July 1995. [Google Scholar]
- Maxfield, F.R.; McGraw, T.E. Endocytic recycling. Nat. Rev. Mol. Cell. Biol. 2004, 5, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Yuli, I.; Oplatka, A. Cytosolic acidification as an early transductory signal of human neutrophil chemotaxis. Science 1987, 235, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Ritchie, K.; Kasai, R.S.; Morone, N.; Sugimura, H.; Tanaka, K.; Sase, I.; Yoshimura, A.; Nakano, Y.; Fujiwara, T.K.; et al. Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol. 2013, 202, 967–983. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Cohen-Kami, T.; Qing, Q.; Duan, X.; Xie, P.; Lieber, C. Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes. Science 2010, 329, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tapec-Dytioco, R.; Tan, W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc. 2003, 125, 11474–11475. [Google Scholar] [CrossRef] [PubMed]
PL Peak Wavelength | pH = 1 | pH = 3 | pH = 5 | pH = 7 | pH = 9 | pH = 11 |
---|---|---|---|---|---|---|
320 | 381 | 390 | 400 | 405 | 402 | 410 |
340 | 400 | 407 | 412 | 420 | 424 | 429 |
350 | - | - | 414 | 425 | - | - |
360 | 430 | 433 | 436 | - | 443 | 447 |
370 | - | - | 450 | 450 | 450 | - |
380 | 455 | 460 | - | - | - | - |
390 | - | - | 460 | 464 | 462 | 464 |
pH Value | Emission Wavelength (nm) | Center Wavelength of Divided Peak 1 | Center Wavelength of Divided Peak 2 |
---|---|---|---|
1 | 450 | 349 | N/A |
3 | 480 | 355 | 405 |
5 | 470 | 358 | 343 |
7 | 470 | 361 | 322 |
9 | 480 | 375 | 297 |
11 | 470 | 373 | 293 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Guo, J.; Chen, J. Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green. Sensors 2017, 17, 2396. https://doi.org/10.3390/s17102396
Wang J, Guo J, Chen J. Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green. Sensors. 2017; 17(10):2396. https://doi.org/10.3390/s17102396
Chicago/Turabian StyleWang, Jing, Junhong Guo, and Jing Chen. 2017. "Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green" Sensors 17, no. 10: 2396. https://doi.org/10.3390/s17102396
APA StyleWang, J., Guo, J., & Chen, J. (2017). Silicon Nanocrystals with pH-Sensitive Tunable Light Emission from Violet to Blue-Green. Sensors, 17(10), 2396. https://doi.org/10.3390/s17102396