Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm
Abstract
:1. Introduction
2. Gradient Tree Boosting Algorithm
2.1. Tree Ensemble and Learning Objective
2.2. Gradient Boosting Algorithm
3. Experimental Setup and Performance Evaluation
3.1. Experimental Setup and the Measurement Procedure
3.2. Data Set and features
3.3. Results
3.4. An Example of Application Based on Raw Data to Realize Fast Recognition
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Martinelli, E.; Pennazza, G.; Santonico, M.; Bernabei, M.; Roscioni, C. Olfactory systems for medical applications. Sens. Actuators B Chem. 2008, 1, 458–465. [Google Scholar] [CrossRef]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. The electronic nose applied to dairy products: A review. Sens. Actuators B Chem. 2009, 638, 1–15. [Google Scholar]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Electronic-nose applications for fruit identification, ripeness and quality grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed]
- RajamÄki, T.; Arnold, M.; Venelampi, O.; Vikman, M.; RÄsÄnen, J.; ItÄvaara, M. An electronic nose and indicator volatiles for monitoring of the composting process. Water Air Soil Pollut. 2005, 162, 71–87. [Google Scholar]
- Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506. [Google Scholar] [CrossRef]
- Brudzewski, K.; Osowski, S.; Pawlowski, W. Metal oxide sensor arrays for detection of explosives at sub-parts-per million concentration levels by the differential electronic nose. Sens. Actuators B Chem. 2012, 161, 528–533. [Google Scholar] [CrossRef]
- Capelli, L.; Dentoni, L.; Sironi, S.; Del Rosso, R. The need for electronic noses for environmental odour exposure assessment. Water Sci. Technol. 2014, 69, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R. Electronic noses for environmental monitoring applications. Sensors 2014, 14, 19979–20007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Transient response analysis for temperature-modulated chemoresistors. Sens. Actuators B Chem. 2003, 93, 57–66. [Google Scholar] [CrossRef]
- Gebicki, J.; Szulczynski, B.; Kaminski, M. Determination of authenticity of brand perfume using electronic nose prototypes. Meas. Sci. Technol. 2015, 26, 125103. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Z.; Chen, Y. Fault detection using the clustering-kNN rule for gas sensor arrays. Sensors 2016, 16, 2069. [Google Scholar] [CrossRef] [PubMed]
- Belhouari, S.B.; Bermak, A.; Shi, M.; Chan, P.C. Fast and robust gas identification system using an integrated gas sensor technology and Gaussian mixture models. IEEE Sens. J. 2005, 5, 1433–1444. [Google Scholar] [CrossRef]
- Leidinger, M.; Reimringer, W.; Alepee, C.; Rieger, M.; Sauerwald, T.; Conrad, T.; Schuetze, A. Gas measurement system for indoor air quality monitoring using an integrated pre-concentrator gas sensor system. In Proceedings of the Micro-Nano-Integration, GMM-Workshop, Duisburg, Germany, 5–6 October 2016; pp. 1–6. [Google Scholar]
- Hassan, M.; Bermak, A. Gas classification using binary decision tree classifier. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014; pp. 2579–2582. [Google Scholar]
- Brezmes, J.; Ferreras, B.; Llobet, E.; Vilanova, X.; Correig, X. Neural network based electronic nose for the classification of aromatic species. Anal. Chim. Acta 1997, 348, 503–509. [Google Scholar] [CrossRef]
- Zhai, X.; Ali, A.A.S.; Amira, A.; Bensaali, F. MLP neural network based gas classification system on Zynq SoC. IEEE Access 2016, 4, 8138–8146. [Google Scholar] [CrossRef]
- Omatul, S.; Yano, M. Mixed Odors Classification by Neural Networks. In Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, 24–26 September 2015; pp. 171–176. [Google Scholar]
- Langkvist, M.; Loutfi, A. Unsupervised feature learning for electronic nose data applied to Bacteria Identification in Blood. In Proceedings of the NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 12–17 December 2011; pp. 1–7. [Google Scholar]
- Liu, Q.; Hu, X.; Ye, M.; Cheng, X.; Li, F. Gas recognition under sensor drift by using deep learning. Int. J. Intell. Syst. 2015, 30, 907–922. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005, 107, 730–737. [Google Scholar] [CrossRef]
- Acevedo, F.; Maldonado, S.; Dominguez, E.; Narvaez, A.; Lopez, F. Probabilistic support vector machines for multi-class alcohol identification. Sens. Actuators B Chem. 2007, 122, 227–235. [Google Scholar] [CrossRef]
- Lentka, Ł.; Smulko, J.M.; Ionescu, R.; Granqvist, C.G.; Kish, L.B. Determination of gas mixture components using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 2015, 3, 341–350. [Google Scholar] [CrossRef]
- Wang, X.; Ye, M.; Duanmua, C. Classification of data from electronic nose using relevance vector machines. Sens. Actuators B Chem. 2009, 140, 143–148. [Google Scholar] [CrossRef]
- Wang, T.; Cai, L.; Fu, Y.; Zhu, T. A wavelet-based robust relevance vector machine based on sensor data scheduling control for modeling mine gas gushing forecasting on virtual environment. Math. Probl. Eng. 2013, 2013. [Google Scholar] [CrossRef]
- Krauss, C.; Do, X.A.; Huck, N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur. J. Oper. Res. 2017, 2, 689–702. [Google Scholar]
- Muezzinoglu, M.K.; Vergara, A.; Huerta, R.; Rulkov, N.; Rabinovich, M.; Selverston, A.; Abarbanel, H. Acceleration of chemo-sensory information processing using transient features. Sens. Actuators B Chem. 2009, 137, 507–512. [Google Scholar] [CrossRef]
- Siadat, M.; Sambemana, H.; Lumbreras, M. New transient feature for metal oxide gas sensor response processing. Procedia Eng. 2012, 47, 52–55. [Google Scholar] [CrossRef]
- Siadat, M.; Losson, E.; Ahmadou, D.; Lumbreras, M. Detection optimization using a transient feature from a metal oxide gas sensor array. Sens. Transducers 2014, 27, 340–341. [Google Scholar]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef] [PubMed]
- Li, P. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. Available online: https://arxiv.org/ftp/arxiv/papers/1203/1203.3491.pdf (accessed on 13 August 2017).
- He, X.; Pan, J.; Jin, O.; Xu, T.; Liu, B.; Xu, T.; Shi, Y.; Atallah, A.; Herbrich, R.; Bowers, S.; et al. Practical Lessons from Predicting Clicks on Ads at Facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, New York, NY, USA, 24–27 August 2014; pp. 51–59. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
Channel | Sensor Part Number | Voltage in Sensor Heater |
---|---|---|
0 | TGS821 | 5 V |
1 | TGS812 | 5 V |
2 | TGS2610 | 5 V |
3 | TGS2612 | 5 V |
4 | TGS3870 | 5 V |
5 | TGS2611 | 5 V |
6 | TGS816 | 5 V |
7 | TGS2602 | 5 V |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Ye, W.; Zhao, X.; Pan, X.; Cao, Y. Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors 2017, 17, 2376. https://doi.org/10.3390/s17102376
Luo Y, Ye W, Zhao X, Pan X, Cao Y. Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors. 2017; 17(10):2376. https://doi.org/10.3390/s17102376
Chicago/Turabian StyleLuo, Yuan, Wenbin Ye, Xiaojin Zhao, Xiaofang Pan, and Yuan Cao. 2017. "Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm" Sensors 17, no. 10: 2376. https://doi.org/10.3390/s17102376
APA StyleLuo, Y., Ye, W., Zhao, X., Pan, X., & Cao, Y. (2017). Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors, 17(10), 2376. https://doi.org/10.3390/s17102376