Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring
Abstract
:1. Introduction
2. Airborne Sensor Platforms
3. Signatures and Sensors for Fire Detection
3.1. Heat
3.2. Light, Flame and Flicker
3.3. Smoke and Byproducts
4. Fire Detection and Monitoring by Human Observers or with Humans in the Loop
4.1. Smoke Detection
4.2. Flame Detection
4.3. Infrared Detection
4.4. Detection Facilitated by UAVs
5. Sensors Enabling Improved Airborne Fire Detection
5.1. IR Sensors
5.2. Visible and Hyperspectral
5.2.1. Daytime
5.2.2. Nighttime
6. Continuous and Automated Sensing
7. Evaluation
7.1. Evaluation Scenarios
7.1.1. Laboratory and Field Demonstrations
7.1.2. Controlled Burns
7.1.3. Field Trials
7.2. Detection Task Performance Measurement
7.2.1. Determining Ground Truth
7.2.2. Estimating Specificity and Precision
7.3. Evaluating Other Aspects
8. Conclusions/Outlook
Acknowledgments
Conflicts of Interest
References
- Arienti, M.C.; Cumming, S.G.; Boutin, S. Empirical models of forest fire initial attack success probabilities: The effects of fuels, anthropogenic linear features, fire weather, and management. Can. J. For. Res. 2006, 36, 3155–3166. [Google Scholar] [CrossRef]
- Hinkley, E.A.; Zajkowski, T. USDA forest service-NASA: Unmanned aerial systems demonstrations-pushing the leading edge in fire mapping. Geocarto Int. 2011, 26, 103–111. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Smith, A.M.S.; Johnston, J.; Freeborn, P.; Amici, S.; Hudak, A.T. Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events. In Thermal Infrared Remote Sensing; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 347–390. [Google Scholar]
- Ambrosia, V.G.; Zajkowski, T. Selection of Appropriate Class UAS/Sensors to Support Fire Monitoring: Experiences in the United States. In Handbook of Unmanned Aerial Vehicles; Valavanis, K.P., Vachtsevanos, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 2723–2754. [Google Scholar]
- Zhukov, B.; Lorenz, E.; Oertel, D.; Wooster, M.; Roberts, G. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens. Environ. 2006, 100, 29–51. [Google Scholar] [CrossRef]
- Fischer, C.; Klein, D.; Kerr, G.; Stein, E.; Lorenz, E.; Frauenberger, O.; Borg, E. Data validation and case studies using the TET-1 Thermal Infrared Satellite System. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 1177–1182. [Google Scholar] [CrossRef]
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- History of Aerial Photography—Professional Aerial Photographers Association Intl. Available online: http://professionalaerialphotographers.com/content.aspx?page_id=22&club_id=808138&module_id=158950 (accessed on 17 January 2016).
- Petterchak, J. Photography Genius: George R. Lawrence & “The Hitherto Impossible”. J. Ill. State Hist. Soc. 2002, 95, 132–147. [Google Scholar]
- Veraverbeke, S.; Sedano, F.; Hook, S.J.; Randerson, J.T.; Jin, Y.; Rogers, B.M. Mapping the daily progression of large wildland fires using MODIS active fire data. Int. J. Wildland Fire 2014, 23, 655–667. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Kleidman, R.G.; King, M.D. SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS. J. Geophys. Res. Atmos. 1998, 103, 31955–31968. [Google Scholar] [CrossRef]
- Pastor, E.; Barrado, C.; Royo, P.; Santamaria, E.; Lopez, J.; Salami, E. Architecture for a helicopter-based unmanned aerial systems wildfire surveillance system. Geocarto Int. 2011, 26, 113–131. [Google Scholar] [CrossRef]
- Ambrosia, V.G.; Wegener, S.; Zajkowski, T.; Sullivan, D.V.; Buechel, S.; Enomoto, F.; Lobitz, B.; Johan, S.; Brass, J.; Hinkley, E. The Ikhana unmanned airborne system (UAS) western states fire imaging missions: From concept to reality (2006–2010). Geocarto Int. 2011, 26, 85–101. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Theoretical Background of Thermal Infrared Remote Sensing. In Thermal Infrared Remote Sensing; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 1–26. [Google Scholar]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 2005, 110, 1–24. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Johnston, J.M.; Wooster, M.J.; Lynham, T.J. Experimental confirmation of the MWIR and LWIR grey body assumption for vegetation fire flame emissivity. Int. J. Wildland Fire 2014, 23, 463–479. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Restás, Á.; Morisette, J.T.; Schroeder, W.; Morton, D.; Justice, C.O. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 2008, 112, 3055–3063. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-Launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Riggan, P.J.; Tissell, R.G. Chapter 6 Airborne Remote Sensing of Wildland Fires. In Developments in Environmental Science, Wildland Fires and Air Pollution; Andrzej Bytnerowicz, M.J.A., Allen, R.R., Christian, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 139–168. [Google Scholar]
- Giglio, L.; Kendall, J.D. Application of the Dozier retrieval to wildfire characterization: A sensitivity analysis. Remote Sens. Environ. 2001, 77, 34–49. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.O. Effect of wavelength selection on characterization of fire size and temperature. Int. J. Remote Sens. 2003, 24, 3515–3520. [Google Scholar] [CrossRef]
- Li, Z.; Kaufman, Y.J.; Ichoku, C.; Fraser, R.; Trishchenko, A.; Giglio, L.; Jin, J.Z.; Yu, X. A review of AVHRR-based active fire detection algorithms: Principles, limitations, and recommendations. In Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort; Ahern, F.J., Goldammer, J.G., Justice, C.O., Eds.; Kugler Publications: The Hague, The Netherlands, 2001; pp. 199–225. [Google Scholar]
- Briz, S.; de Castro, A.J.; Aranda, J.M.; Meléndez, J.; López, F. Reduction of false alarm rate in automatic forest fire infrared surveillance systems. Remote Sens. Environ. 2003, 86, 19–29. [Google Scholar] [CrossRef]
- Schroeder, W.; Ellicott, E.; Ichoku, C.; Ellison, L.; Dickinson, M.B.; Ottmar, R.D.; Clements, C.; Hall, D.; Ambrosia, V.; Kremens, R. Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data. Remote Sens. Environ. 2014, 140, 719–730. [Google Scholar] [CrossRef]
- Çetin, A.E.; Dimitropoulos, K.; Gouverneur, B.; Grammalidis, N.; Günay, O.; Habiboǧlu, Y.H.; Töreyin, B.U.; Verstockt, S. Video fire detection—Review. Digit. Signal Process. 2013, 23, 1827–1843. [Google Scholar] [CrossRef] [Green Version]
- Celik, T.; Demirel, H.; Ozkaramanli, H.; Uyguroglu, M. Fire detection using statistical color model in video sequences. J. Vis. Commun. Image Represent. 2007, 18, 176–185. [Google Scholar] [CrossRef]
- Gubernov, V.; Kolobov, A.; Polezhaev, A.; Sidhu, H.; Mercer, G. Period doubling and chaotic transient in a model of chain-branching combustion wave propagation. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 2010, 466, 2747–2769. [Google Scholar] [CrossRef]
- Stadler, A.; Windisch, T.; Diepold, K. Comparison of intensity flickering features for video based flame detection algorithms. Fire Saf. J. 2014, 66, 1–7. [Google Scholar] [CrossRef]
- Phillips, W., III; Shah, M.; da Vitoria Lobo, N. Flame recognition in video. Pattern Recognit. Lett. 2002, 23, 319–327. [Google Scholar] [CrossRef]
- Marbach, G.; Loepfe, M.; Brupbacher, T. An image processing technique for fire detection in video images. Fire Saf. J. 2006, 41, 285–289. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Wang, J. Multi-Feature fusion based fast video flame detection. Build. Environ. 2010, 45, 1113–1122. [Google Scholar] [CrossRef]
- Toreyin, B.U.; Dedeoglu, Y.; Cetin, A.E. Contour based smoke detection in video using wavelets. In Proceedings of the 14th European Signal Conference, Florence, Italy, 4–8 September 2006; pp. 1–5.
- Zimmerman, E.W. Forest Fire Detection; U.S. Department of Agriculture: Washington, DC, USA, 1969.
- Byram, G.M.; Jemison, G.M. Some Principles of Visibility and Their Application to Forest Fire Detection; Department of Agriculture: Washington, DC, USA, 1948. [Google Scholar]
- Utkin, A.B.; Fernandes, A.; Simões, F.; Lavrov, A.; Vilar, R. Feasibility of forest-fire smoke detection using lidar. Int. J. Wildland Fire 2003, 12, 159–166. [Google Scholar] [CrossRef]
- Yuan, F. A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognit. Lett. 2008, 29, 925–932. [Google Scholar] [CrossRef]
- Vicente, J.; Guillemant, P. An image processing technique for automatically detecting forest fire. Int. J. Therm. Sci. 2002, 41, 1113–1120. [Google Scholar] [CrossRef]
- Toreyin, B.U.; Cetin, A.E. Wildfire detection using LMS based active learning. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, Taipei, Taiwan, 19–24 April 2009; pp. 1461–1464.
- Gubbi, J.; Marusic, S.; Palaniswami, M. Smoke detection in video using wavelets and support vector machines. Fire Saf. J. 2009, 44, 1110–1115. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chapter 4 Chemical Composition of Wildland Fire Emissions. In Developments in Environmental Science, Wildland Fires and Air Pollution; Andrzej Bytnerowicz, M.J.A., Allen, R.R., Christian, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 8, pp. 79–107. [Google Scholar]
- Ward, D.E.; Hardy, C.C. Wildfires Smoke emissions from wildland fires. Environ. Int. 1991, 17, 117–134. [Google Scholar] [CrossRef]
- Yamasoe, M.A.; Artaxo, P.; Miguel, A.H.; Allen, A.G. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-Soluble species and trace elements. Atmos. Environ. 2000, 34, 1641–1653. [Google Scholar] [CrossRef]
- Ross, A.N.; Wooster, M.J.; Boesch, H.; Parker, R. First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes. Geophys. Res. Lett. 2013, 40, 4098–4102. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Stavros, E.N.; Hook, S.J. Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sens. Environ. 2014, 154, 153–163. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Daytime fire detection using airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 1646–1657. [Google Scholar] [CrossRef]
- Amici, S.; Wooster, M.J.; Piscini, A. Multi-Resolution spectral analysis of wildfire potassium emission signatures using laboratory, airborne and spaceborne remote sensing. Remote Sens. Environ. 2011, 115, 1811–1823. [Google Scholar] [CrossRef]
- Vodacek, A.; Kremens, R.L.; Fordham, A.J.; Vangorden, S.C.; Luisi, D.; Schott, J.R.; Latham, D.J. Remote optical detection of biomass burning using a potassium emission signature. Int. J. Remote Sens. 2002, 23, 2721–2726. [Google Scholar] [CrossRef]
- Liu, N.; Tissot, J.; Talbaut, M.; Yon, J.; Coppalle, A.; Bescond, A. 9th Asia-Oceania Symposium on Fire Science and TechnologySpectral Study of the Smoke Optical Density in Non-flaming Condition. Procedia Eng. 2013, 62, 821–828. [Google Scholar]
- McFayden, C.; Kellar, L.; Tarrant, D. How Aircraft Find Wildfires; Ontario Ministry of Natural Resources: Sudbury, ON, Canada, 2008. [Google Scholar]
- Park, J.; Ko, B.; Nam, J.-Y.; Kwak, S. Wildfire smoke detection using spatiotemporal bag-of-features of smoke. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Clearwater Beach, FL, USA, 15–17 January 2013; pp. 200–205.
- Labati, R.D.; Genovese, A.; Piuri, V.; Scotti, F. Wildfire Smoke Detection Using Computational Intelligence Techniques Enhanced with Synthetic Smoke Plume Generation. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 1003–1012. [Google Scholar] [CrossRef]
- Hakan Habiboglu, Y.; Gunay, O.; Enis Cetin, A. Real-Time wildfire detection using correlation descriptors. In Proceedings of the 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011; pp. 894–898.
- Dickinson, M.B.; Hudak, A.T.; Zajkowski, T.; Loudermilk, E.L.; Schroeder, W.; Ellison, L.; Kremens, R.L.; Holley, W.; Martinez, O.; Paxton, A.; et al. Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 48–61. [Google Scholar] [CrossRef]
- Archer, M. Aerial Firefighting with Night Vision Goggles—Part 2. Available online: http://www.firehouse.com/article/10463537/aerial-firefighting-with-night-vision-goggles-part-2 (accessed on 21 February 2016).
- Jennings, S.; Craig, G.; Erdos, R.; Filiter, D.; Crowell, B.; Macuda, T. Preliminary assessment of night vision goggles in airborne forest fire suppression. In Proceedings of the SPIE, Orlando, FL, USA, 9 April 2007; Volume 6557, pp. 65570Z.1–65570Z.8.
- Tomkins, L.; Benzeroual, T.; Milner, A.; Zacher, J.E.; Ballagh, M.; McAlpine, R.S.; Doig, T.; Jennings, S.; Craig, G.; Allison, R.S. Use of night vision goggles for aerial forest fire detection. Int. J. Wildland Fire 2014, 23, 678–685. [Google Scholar] [CrossRef]
- Braithwaite, M.G.; Douglass, P.K.; Durnford, S.J.; Lucas, G. The hazard of spatial disorientation during helicopter flight using night vision devices. Aviat. Space Environ. Med. 1998, 69, 1038–1044. [Google Scholar] [PubMed]
- Task, H.L. Night vision goggle visual acuity assessment: Results of an interagency test. In Proceedings of SPIE, Orlando, FL, USA, 16 April 2001; Volume 4361, pp. 130–137.
- Estrera, J.P.; Ostromek, T.; Isbell, W.; Bacarella, A. Modern night vision goggles for advanced, infantry applications. In Proceedings of the SPIE Helmet- and Head-Mounted Displays VIII: Technologies and Applications, Orlando, FL, USA, 11 September 2003; Volume 5079, pp. 196–207.
- Uttal, W.R.; Gibb, R.W. On the psychophysics of night vision goggles. In Interpreting Remote Sensing Imagery: Human Factors; Hoffman, R.R., Markam, A.B., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 117–136. [Google Scholar]
- Rabin, J. Spatial Contrast Sensitivity through Aviators Night-Vision Imaging-System. Aviat. Space Environ. Med. 1993, 64, 706–710. [Google Scholar] [PubMed]
- Allison, R.S.; Macuda, T.; Jennings, S. Detection and Discrimination of Motion-Defined Form: Implications for the Use of Night Vision Devices. IEEE Trans. Hum. Mach. Syst. 2013, 43, 558–569. [Google Scholar] [CrossRef]
- Allison, R.S.; Brandwood, T.; Vinnikov, M.; Zacher, J.E.; Jennings, S.; Macuda, T.; Thomas, P.J.; Palmisano, S.A. Psychophysics of night vision device halo. In Vision and Displays for Military and Security Applications: The Advanced Deployable Day/Night Simulation Project; Niall, K., Ed.; Springer-Verlag: New York, NY, USA, 2010; pp. 123–140. [Google Scholar]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Greenfield, P.; Smith, W.; Chamberlain, D. PHOENIX—The New Forest Service Airborne Infrared Fire Detection and Mapping System; USDA Forest Service: Salt Lake City, UT, USA, 2003.
- Quayle, B.; Johnson, J.; Queen, L.; Mellin, T. Infrared Field Users’ Guide; USDA Forest Service: Salt Lake City, UT, USA, 2014.
- Radke, L.F.; Clark, T.L.; Coen, J.L.; Walther, C.A.; Lockwood, R.N.; Riggan, P.J.; Brass, J.A.; Higgins, R.G. The WildFire Experiment (WiFE): Observations with Airborne Remote Sensors. Can. J. Remote Sens. 2000, 26, 406–417. [Google Scholar] [CrossRef]
- Kubota, S. Cobra attack helicopters retooled to fight fire. Fire Manag. Today 2007, 67, 21–24. [Google Scholar]
- Pastor, E.; Barrado, C.; Royo, P.; Lopez, J.; Santamaria, E.; Prats, X.; Batlle, J.M. Red-Eye: A Helicopter-based architecture for tactical wildfire monitoring strategies. In Proceedings of the 2009 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 May 2009; pp. 1–11.
- Niederleitner, J. Detecting Holdover Fires with the AGA Thermovision 750 Infrared Scanner; Canadian Forestry Service: Edmonton, AB, Canada, 1976. [Google Scholar]
- Paugam, R.; Wooster, M.J.; Roberts, G. Use of Handheld Thermal Imager Data for Airborne Mapping of Fire Radiative Power and Energy and Flame Front Rate of Spread. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3385–3399. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Werner, D. Fire Drones. Aerosp. Am. 2015, 53, 28–31. [Google Scholar]
- Zajkowski, T.J.; Dickinson, M.B.; Hiers, J.K.; Holley, W.; Williams, B.W.; Paxton, A.; Martinez, O.; Walker, G.W. Evaluation and use of remotely piloted aircraft systems for operations and research—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 114–128. [Google Scholar] [CrossRef]
- Merino, L.; Caballero, F.; Martínez-de-Dios, J.R.; Maza, I.; Ollero, A. An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement. J. Intell. Robot. Syst. 2011, 65, 533–548. [Google Scholar] [CrossRef]
- Phong, L.N.; Pancrati, O.; Marchese, L.; Chateauneuf, F. Spaceborne linear arrays of 512 × 3 microbolometers. In Proceedings of the SPIE Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS and Nanodevices XII, San Francisco, CA, USA, 2 February 2013; Volume 8614, pp. 86140N:1–86140N:12.
- Holst, G.C. Common Sense Approach to Thermal Imaging; SPIE Optical Engineering Press: Bellingham, WA USA, 2000. [Google Scholar]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Rogalski, A. Comparison of photon and thermal detector performance. In Handbook of Infra-Red Detection Technologies; Henini, M., Razeghi, M., Eds.; Elsevier: Oxford, UK, 2002; pp. 5–83. [Google Scholar]
- Bois, P.; Guériaux, V.; Briere de l’Isle, N.; Manissadjian, A.; Facoetti, H.; Marcadet, X.; Costard, E.; Nedelcu, A. QWIP status and future trends at Thales. In Proceedings of the SPIE Quantum Sensing and Nanophotonic Devices IX, San Francisco, CA, USA, 21 January 2012; Volume 8268, pp. 82682M:1–82682M:11.
- Gunapala, S.D.; Bandara, S.V.; Liu, J.K.; Mumolo, J.M.; Rafol, S.B.; Ting, D.Z.; Soibel, A.; Hill, C. Quantum Well Infrared Photodetector Technology and Applications. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 154–165. [Google Scholar] [CrossRef]
- Runtz, M.; Perrier, F.; Ricard, N.; Costard, E.; Nedelcu, A.; Guériaux, V. QWIP infrared detector production line results. In Proceedings of the SPIE Infrared Technology and Applications XXXVIII, Baltimore, MD, USA, 23 April 2012; Volume 8353, pp. 835339:1–835339:12.
- Soibel, A.; Gunapala, S.D.; Bandara, S.V.; Liu, J.K.; Mumolo, J.M.; Ting, D.Z.; Hill, C.J.; Nguyen, J. Large format multicolor QWIP focal plane arrays. In Proceedings of the SPIE Infrared Technology and Applications XXXV, Orlando, FL, USA, 13 April 2009; Volume 7298, pp. 729806:1–729806:8.
- Miller, J.L. Future sensor system needs for staring arrays. Infrared Phys. Technol. 2011, 54, 164–169. [Google Scholar] [CrossRef]
- Hoffman, J.W.; Riggan, P.J.; Griffin, S.A.; Grush, R.C.; Grush, W.H.; Pena, J. FireMapper 2.0: A multispectral uncooled infrared imaging system for airborne wildfire mapping and remote sensing. In Proceedings of the SPIE Infrared Spaceborne Remote Sensing XI, San Diego, CA, USA, 3 August 2003; Volume 5152, pp. 92–99.
- Kontoes, C.; Keramitsoglou, I.; Sifakis, N.; Konstantinidis, P. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements. Sensors 2009, 9, 1204–1220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Zhang, Y.; Liu, Z. A Survey on Technologies for Automatic Forest Fire Monitoring, Detection and Fighting Using UAVs and Remote Sensing Techniques. Can. J. For. Res. 2015, 45, 783–792. [Google Scholar] [CrossRef]
- Kennedy, A.; Masini, P.; Lamb, M.; Hamers, J.; Kocian, T.; Gordon, E.; Parrish, W.; Williams, R.; LeBeau, T. Advanced uncooled sensor product development. In Proceedings of the SPIE Infrared Technology and Applications XLI, Baltimore, MD, USA, 8 June 2015; Volume 9451, pp. 94511C:1–94511C:10.
- Endoh, T.; Tohyama, S.; Yamazaki, T.; Tanaka, Y.; Okuyama, K.; Kurashina, S.; Miyoshi, M.; Katoh, K.; Yamamoto, T.; Okuda, Y.; et al. Uncooled infrared detector with 12 μm pixel pitch video graphics array. In Proceedings of the SPIE Infrared Technology and Applications XXXIX, Baltimore, MD, USA, 29 April 2013; Volume 8704, pp. 87041G:1–87041G:11.
- Jiang, L.; Liu, H.; Chi, J.; Qian, L.; Pan, F.; Liu, X.; Zhu, X.; Ma, Z. Uncooled infrared detector and imager development at DALI Technology. In Proceedings of the SPIE Infrared Technology and Applications XLI, Baltimore, MD, USA, 20 April 2015; Volume 9451, pp. 94511A:1–94511A:6.
- Hanson, C.M.; Ajmera, S.K.; Brady, J.; Fagan, T.; McCardel, W.; Morgan, D.; Schimert, T.; Syllaios, A.J.; Taylor, M.F. Small pixel a-Si/a-SiGe bolometer focal plane array technology at L-3 Communications. In Proceedings of the SPIE Infrared Technology and Applications XXXVI, Orlando, FL, USA, 5 April 2010; Volume 7660, pp. 76600R:1–76600R:9.
- Skidmore, G.D.; Han, C.J.; Li, C. Uncooled microbolometers at DRS and elsewhere through 2013. In Proceedings of the SPIE Image Sensing Technologies: Materials, Devices, Systems, and Applications, Baltimore, MD, USA, 5 May 2014; Volume 9100, pp. 910003:1–910003:5.
- Lohrmann, D.; Littleton, R.; Reese, C.; Murphy, D.; Vizgaitis, J. Uncooled long-wave infrared small pixel focal plane array and system challenges. Opt. Eng. 2013, 52, 061305. [Google Scholar] [CrossRef]
- Nugent, P.W.; Shaw, J.A.; Pust, N.J. Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization. Opt. Eng. 2013, 52, 061304. [Google Scholar] [CrossRef]
- Parrish, W.J.; Woolaway, J.T., II. Improvements in uncooled systems using bias equalization. In Proceedings of the SPIE Infrared Technology and Applications XXV, Orlando, FL, USA, 5 April 1999; Volume 3698, pp. 748–755.
- Merino, L.; Caballero, F.; Martínez-de Dios, Jr.; Ferruz, J.; Ollero, A. A cooperative perception system for multiple UAVs: Application to automatic detection of forest fires. J. Field Robot. 2006, 23, 165–184. [Google Scholar] [CrossRef]
- Driggers, R.G.; Hodgkin, V.; Vollmerhausen, R. What good is SWIR? Passive day comparison of VIS, NIR, and SWIR. In Proceedings of the SPIE Infrared Imaging Systems: Design, Analysis, Modeling and Testing XXIV, Baltimore, MD, USA, 29 April 2013; Volume 8706, pp. 87060L:1–87060L:15.
- Nazemi, J.; Battaglia, J.; Brubaker, R.; Delamere, M.; Martin, C. A low-power, TEC-less, 1280 × 1024, compact SWIR camera with temperature-dependent, non-uniformity corrections. In Proceedings of the SPIE Infrared Technology and Applications XXXVIII, Baltimore, MD, USA, 23 April 2012; Volume 8353, pp. 83530B:1–83530B:10.
- Günay, O.; Taşdemir, K.; Uğur Töreyin, B.; Enis Çetin, A. Video based wildfire detection at night. Fire Saf. J. 2009, 44, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Adomeit, U.; Krieg, J. Shortwave infrared for night vision applications: Illumination levels and sensor performance. In Proceedings of the SPIE Optics in Atmospheric Propagation and Adaptive Systems XVIII, Toulouse, France, 21 September 2015; Volume 9641, pp. 964104:1–964104:12.
- Vollmerhausen, R.H.; Driggers, R.G.; Hodgkin, V.A. Night illumination in the near- and short-wave infrared spectral bands and the potential for silicon and indium-gallium-arsenide imagers to perform night targeting. Opt. Eng. 2013, 52, 043202. [Google Scholar] [CrossRef]
- Floryan, R.F.; DeVoe, N.; Peck, T. New image intensifier family for military and homeland defense. In Proceedings of the SPIE Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement II, Orlando, FL, USA, 21 April 2003; Volume 5071, pp. 397–404.
- Estrera, J.P.; Bender, E.J.; Giordana, A.; Glesener, J.W.; Iosue, M.J.; Lin, P.P.; Sinor, T.W. Long lifetime generation IV image intensifiers with unfilmed microchannel plate. In Proceedings of the SPIE Image Intensifiers and Applications II, San Diego, CA, USA, 30 July 2000; Volume 4128, pp. 46–53.
- Craig, G.; Jennings, S.; Thorndycraft, D. Handling qualities comparison of panoramic night vision goggles and 46° night vision goggles. In Proceedings of the SPIE Helmet- and Head-Mounted Displays VIII: Technologies and Applications, Orlando, FL, USA, 21 April2003; Volume 5079, pp. 127–136.
- Lemoine, O.; François, J.-M.; Point, P. Contribution of TopOwl head mounted display system in degraded visual environments. In Proceedings of the SPIE Degraded Visual Environments: Enhanced, Synthetic, and External Vision Solutions 2013, Baltimore, MD, USA, 29 April 2013; Volume 8737, pp. 87370B:1–87370B:10.
- Essock, E.A.; Sinai, M.J.; McCarley, J.S.; Krebs, W.K.; DeFord, J.K. Perceptual ability with real-world nighttime scenes: Image-Intensified, infrared, and fused-color imagery. Hum. Factors 1999, 41, 438–452. [Google Scholar] [CrossRef] [PubMed]
- Link, N.K.; Kruk, R.V.; McKay, D.; Jennings, S.A.; Craig, G. Hybrid enhanced and synthetic vision system architecture for rotorcraft operations. In Proceedings of the SPIE Enhanced and Synthetic Vision 2002, Orlando, FL, USA, 1 April 2002; Volume 4713, pp. 190–201.
- Exelis—i-Aware® Tactical Mobility Night Vision Goggle Fusion, F6045 Series. Available online: http://www.exelisinc.com/solutions/i-Aware-Tactical-Mobility-Night-Vision-Goggle-Fusion-F6045-Series/Pages/default.aspx (accessed on 15 March 2016).
- Waxman, A.M.; Fay, D.A.; Gove, A.N.; Seibert, M.; Racamato, J.P.; Carrick, J.E.; Savoye, E.D. Color night vision: Fusion of intensified visible and thermal IR imagery. In Proceedings of the SPIE Synthetic Vision for Vehicle Guidance and Control, Orlando, FL, USA, 17 April 1995; Volume 2463, pp. 58–68.
- Hogervorst, M.A.; Toet, A. Evaluation of a color fused dual-band NVG. In Proceedings of the 12th International Conference on Information Fusion, FUSION’09, Seattle, WA, USA, 6–9 July 2009; pp. 1432–1438.
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Phan, C.; Liu, H.H.T. A cooperative UAV/UGV platform for wildfire detection and fighting. In Proceedings of the Asia Simulation Conference—7th International Conference on System Simulation and Scientific Computing, ICSC 2008, Beijing, China, 10–12 October 2008; pp. 494–498.
- Alexis, K.; Nikolakopoulos, G.; Tzes, A.; Dritsas, L. Coordination of Helicopter UAVs for Aerial Forest-Fire Surveillance. In Applications of Intelligent Control to Engineering Systems; Valavanis, K.P., Ed.; Intelligent Systems, Control, and Automation: Science and Engineering; Springer: Dordrecht, The Netherlands, 2009; pp. 169–193. [Google Scholar]
- Casbeer, D.W.; Kingston, D.B.; Beard, R.W.; McLain, T.W. Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Syst. Sci. 2006, 37, 351–360. [Google Scholar] [CrossRef]
- Campbell, D.; Born, W.G.; Beck, J.; Bereska, B.; Frederick, K.; Hua, S. Airborne wildfire intelligence system: A decision support tool for wildland fire managers in Alberta. In Proceedings of the SPIE Thermosense XXIV, Orlando, FL, USA, 1 April 2002; Volume 4710, pp. 159–170.
- Vasterling, M.; Meyer, U. Challenges and Opportunities for UAV-Borne Thermal Imaging. In Thermal Infrared Remote Sensing; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 69–92. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Green, D.M.; Swets, J.A. Signal Detection Theory and Psychophysics; John Wiley and Sons: New York, NY, USA, 1966. [Google Scholar]
- Ottmar, R.D.; Hiers, J.K.; Butler, B.W.; Clements, C.B.; Dickinson, M.B.; Hudak, A.T.; O’Brien, J.J.; Potter, B.E.; Rowell, E.M.; Strand, T.M.; et al. Measurements, datasets and preliminary results from the RxCADRE project-2008, 2011 and 2012. Int. J. Wildland Fire 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Roberts, G.J.; Wooster, M.J. Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1200–1218. [Google Scholar] [CrossRef]
- Mengod, P.C.; Bravo, J.A.T.; Sardá, L.L. The influence of external factors on false alarms in an infrared fire detection system. Int. J. Wildland Fire 2015, 24, 261–266. [Google Scholar] [CrossRef]
Definition | Calculation | |
---|---|---|
Event | ||
Number of Events | Total number of events both fire and non-fire | |
Hit/True Positive | Fire that is detected | = total number of actual fires detected |
Miss/False Negative | Fire that is not detected | |
False Alarm/False Positive | Non-fire event that is (incorrectly) detected | = total number of non-fire events detected |
Correct Rejection/True Negative | Non-fire event that is (correctly) not detected | |
Rate | ||
False Alarm Rate | Proportion of non-fire events (incorrectly) detected | |
Hit Rate or Sensitivity | Proportion of actual fire events that are detected | |
Miss Rate | Proportion of actual fire events that are not detected | |
Correct Rejection Rate or Specificity | Proportion of non-fire events that are (correctly) not detected | |
Precision | Proportion of detected events that are actually fires |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allison, R.S.; Johnston, J.M.; Craig, G.; Jennings, S. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring. Sensors 2016, 16, 1310. https://doi.org/10.3390/s16081310
Allison RS, Johnston JM, Craig G, Jennings S. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring. Sensors. 2016; 16(8):1310. https://doi.org/10.3390/s16081310
Chicago/Turabian StyleAllison, Robert S., Joshua M. Johnston, Gregory Craig, and Sion Jennings. 2016. "Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring" Sensors 16, no. 8: 1310. https://doi.org/10.3390/s16081310
APA StyleAllison, R. S., Johnston, J. M., Craig, G., & Jennings, S. (2016). Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring. Sensors, 16(8), 1310. https://doi.org/10.3390/s16081310