Next Article in Journal
Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions
Previous Article in Journal
Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts
Open AccessArticle

Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

1
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica de la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación, Área de Ingeniería Mecánica, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
2
Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo Belén 15, 47011 Valladolid, Spain
3
Informática, Universidad Pontificia de Salamanca, Calle Compañía 5, 37002 Salamanca, Spain
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Academic Editor: Vittorio M.N. Passaro
Sensors 2015, 15(6), 14241-14260; https://doi.org/10.3390/s150614241
Received: 6 May 2015 / Revised: 8 June 2015 / Accepted: 10 June 2015 / Published: 17 June 2015
(This article belongs to the Section Physical Sensors)
Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. View Full-Text
Keywords: acoustic biometric system; acoustic images; preprocessing techniques; support vector machine acoustic biometric system; acoustic images; preprocessing techniques; support vector machine
Show Figures

Figure 1

MDPI and ACS Style

Del Val, L.; Izquierdo-Fuente, A.; Villacorta, J.J.; Raboso, M. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines. Sensors 2015, 15, 14241-14260.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop