A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume
Abstract
:1. Introduction
2. Materials and Methods
Samples | Methods | No. of Raters | No. of Replications by Each Rater | No. of Measurements | Reference Technique |
---|---|---|---|---|---|
Cylinders (N = 12) | Geometry SkanLab | 1 | 1 | 12 | - |
2 | 2 | 48 | Geometry | ||
Human Total Arms (N = 30) | Water Displacement SkanLab | 2 | 2 | 120 | - |
2 | 2 | 120 | Water Displacement |
2.1. Samples
2.1.1. Inanimate Objects
2.1.2. Human Total Arms
2.2. Techniques
2.2.1. Geometric Volume Determination
2.2.2. Water Displacement Method
2.2.3. The Newly Proposed Procedure
2.3. Statistical Analysis
2.3.1. Accuracy
2.3.2. Reliability
2.3.3. Duration
3. Results
3.1. Inanimate Objects
3.1.1. Accuracy
3.1.2. Reliability
Rater 1 Absolute Relative | Rater 2 Absolute Relative | |||
---|---|---|---|---|
Bias a | −21.7 mL | −5.7% | −22.2 mL | −5.7% |
LOA b | −63.9 to 20.6 mL | −17.9 to 6.6% | −61.7 to 17.4 mL | −19.4 to 8.0% |
Rater 1 | Rater 2 | |
---|---|---|
Mean ± SD | Mean ± SD | |
Replicate 1 | 672.7 ± 597.0 mL | 671.5 ± 594.7 mL |
Replicate 2 | 672.7 ± 593.1 mL | 674.9 ± 599.6 mL |
Intra-rater SEM a | 5.82 mL | 5.84 mL |
Intra-rater ICC b | 0.9999 (0.9997 to 1) | 0.9999 (0.9997 to 1) |
Inter-rater SEM a | 5.83 mL | |
Inter-rater ICC b | 0.9999 (0.9999 to 1) |
3.2. Human Total Arms
Anthropometric Variable | Women (N = 15) Mean ± SD | Men (N = 15) Mean ± SD |
---|---|---|
Height (cm) | 157.9 ± 7.2 | 171.2 ± 7.1 |
Weight (kg) | 57.1 ± 12.5 | 69.6 ± 11.8 |
BMI (kg/m2) | 22.8 ± 3.6 | 23.7 ± 3.3 |
Total Arm Length (cm) | 34.2 ± 1.6 | 37.6 ± 1.9 |
Upper Arm Circumference (cm) a | 28.8 ± 4.2 | 30.9 ± 3.1 |
3.2.1. Accuracy
Rater 1 Absolute Relative | Rater 2 Absolute Relative | |||
---|---|---|---|---|
Bias a | −13.6 mL | −0.8% | −6.1 mL | −0.4% |
LOA b | −60.1 to 32.8 mL | −3.3% to 1.7% | −54.4 to 42.2 mL | −2.8% to 2.0% |
3.2.2. Reliability
Water Displacement | SkanLab | |||
---|---|---|---|---|
Rater 1 | Rater 2 | Rater 1 | Rater 2 | |
Mean ± SD (mL) | Mean ± SD (mL) | Mean ± SD (mL) | Mean ± SD (mL) | |
Replicate 1 | 1927.7 ± 491.9 | 1919.2 ± 489.9 | 1911.4 ± 495.4 | 1911.5 ± 501.8 |
Replicate 2 | 1922.2 ± 495.7 | 1920.2 ± 497.4 | 1911.3 ± 496.1 | 1915.7 ± 501.7 |
Intra-rater SEM a | 9.79 | 12.95 | 15.54 | 16.50 |
Intra-rater ICC b | 0.9996 (0.9991 to 0.9998) | 0.9993 (0.9986 to 0.9997) | 0.9990 (0.9978 to 0.9995) | 0.9989 (0.9977 to 0.9995) |
Inter-rater SEM a | 6.92 | 8.56 | ||
Inter-rater ICC b | 0.9998 (0.9995 to 0.9999) | 0.9997 (0.9994 to 0.9999) |
3.2.3. Duration of Measurement
4. Discussion
Technique under Study | Standard | Bias a (mL) | LOA b (mL or %) | Sample Characteristics | Reference |
---|---|---|---|---|---|
Inanimate Objects (Cylinders) | |||||
SkanLab | Geometry | −21.9 | −62.0 to 18.2 | Twelve cylinders (190 mL to 2002 mL) | Present Study |
Water Displacement | Geometry | −2.7 | −16.4 to 11.0 | ||
−7.6c | --- | Eleven cylinders (10 mL to 4000 mL) | Lette et al., 2006 [30] | ||
−120.7 | −348.1 to 106.7 c | Seven cylinders (272 mL to 2042 mL) | Mc Kinnon et al., 2007 [16] | ||
52 | --- | A cylindrical object (1568 mL) measured 10 times | Man et al., 2004 [18] | ||
Perometer | Geometry | 34 | --- | ||
Laser Scanning | Geometry | −0.4 | −14.7 to 13.9 c | Seven cylinders (272 mL to 2042 mL) | Mc Kinnon et al., 2007 [16] |
Human Arms | |||||
SkanLab | Water Displacement | −9.9 | −49.6 to 29.8 | Thirty healthy volunteers; right arm | Present Study |
Circumferential Methods | Water Displacement | 29.4 d | −158.8 to 216.8 | Forty-one breast cancer patients and 25 control subjects; right arm | Taylor et al., 2006 [13] |
75.4 e | −110.2 to 260.2 | ||||
52 f | −282 to 386 | Twenty-five breast cancer patients; surgical upper extremity | Megens et al., 2001 [8] | ||
40 g | −194 to 274 | ||||
--- | 479; 655 h | Fifty patients with lymphedema; edematous arm | Sander et al., 2002 [9] | ||
Kinect | Water Displacement | 45.3 | −36.3 to 126.8 i | Twenty-five patients with lymphedema; both arms | Öhberg et al., 2014 [27] |
Laser Scanning | Water Displacement | 151.7 | −227 to 53 l | Ten volunteers; right arm | Mc Kinnon et al., 2007 [16] |
Perometer | Water Displacement | 74.1 | --- | Thirty-one healthy volunteers; dominant arm | Adriaenssens et al., 2013 [28] |
Perometer | DXAi | 0.7% | −7.7 to 6.3% | Measurements were performed on both whole arms | Santìn and Ward, 2014 [19] |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of Unilateral Lymphoedema after Breast Cancer: A Systematic Review and Meta-Analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Sakorafas, G.H.; Peros, G.; Cataliotti, L.; Vlastos, G. Lymphedema Following Axillary Lymph Node Dissection for Breast Cancer. Surg. Oncol. 2006, 15, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Svensson, B. Outback Breast Cancer Related Lymphoedema Interventions: Do We Get the Same Lymphoedema Outcomes? Lourdes Hosp. Community Health Serv.; 2009. Available online: http://www.ruralheti.health.nsw.gov.au/__documents/complete-projects/brenda_svensson_report_2009.pdf (accessed on 21 May 2015). [Google Scholar]
- Lilja, M.; Oberg, T. Volumetric Determinations with CAD/CAM in Prosthetics Andorthotics: Errors of Measurement. J. Rehabil. Res. Dev. 1995, 32, 141–148. [Google Scholar] [PubMed]
- Norton, J.; Donaldson, N.; Dekker, L. 3D Whole Body Scanning to Determine Mass Properties of Legs. J. Biomech. 2002, 35, 81–86. [Google Scholar] [CrossRef]
- Yamauchi, J.; Hargens, A. Effects of Dynamic and Static Handgrip Exercises on Hand and Wrist Volume. Eur. J. Appl. Physiol. 2008, 103, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gallagher, D.; Thornton, J.C.; Yu, W.; Weil, R.; Kovac, B.; Pi-Sunyer, F.X. Regional Body Volumes, BMI, Waist Circumference, and Percentage Fat in Severely Obese Adults. Obesity 2007, 15, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Megens, A.M.; Harris, S.R.; Kim-Sing, C.; McKenzie, D.C. Measurement of Upper Extremity Volume in Women after Axillary Dissection for Breast Cancer. Arch. Phys. Med. Rehabil. 2001, 82, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Sander, A.P.; Hajer, N.M.; Hemenway, K.; Miller, A.C. Upper-Extremity Volume Measurements in Women with Lymphedema: A Comparison of Measurements Obtained via Water Displacement with Geometrically Determined Volume. Phys. Ther. 2002, 82, 1201–1212. [Google Scholar] [PubMed]
- Petland, C.F. Volumetry of Limbs. In Lymph Stasis: Pathophysiology, Diagnosis and Treatment; Olszewski, W.I., Ed.; CRC Press: Boston, MA, USA, 1991; pp. 444–451. [Google Scholar]
- Kaulesar Sukul, D.M.K.S.; den Hoed, P.T.; Johannes, E.J.; van Dolder, R.; Benda, E. Direct and Indirect Methods for the Quantification of Leg Volume: Comparison between Water Displacement Volumetry, the Disk Model Method and the Frustum Sign Model Method, Using the Correlation Coefficient and the Limits of Agreement. J. Biomed. Eng. 1993, 15, 477–480. [Google Scholar] [CrossRef] [Green Version]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric Measurement Error and the Assessment of Nutritional Status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Jayasinghe, U.W.; Koelmeyer, L.; Ung, O.; Boyages, J. Reliability and Validity of Volume Measurements for Assessment of Lymphedema. Phys. Ther. 2006, 86, 205–214. [Google Scholar] [PubMed]
- Armer, J.M.; Stewart, B.R. A Comparison of Four Diagnostic Criteria for Lymphedema in a Post-Breast Cancer Population. Lymphat. Res. Biol. 2005, 3, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Stanton, A.W.; Northfield, J.W.; Holroyd, B.; Mortimer, P.S.; Levick, J.R. Validation of an Optoelectronic Limb Volumeter (Perometer). Lymphology 1997, 30, 77–97. [Google Scholar] [PubMed]
- McKinnon, J.G.; Wong, V.; Temple, W.J.; Galbraith, C.; Ferry, P.; Clynch, G.S.; Clynch, C. Measurement of Limb Volume: Laser Scanning Versus Volume Displacement. J. Surg. Oncol. 2007, 96, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Mandava, N. Color Multiplexed Single Pattern S.L.I. Master’s Thesis, The Graduate School University of Kentucky, Lexington, KY, USA, 2008. [Google Scholar]
- Man, I.O.; Markland, K.L.; Morrissey, M.C. The Validity and Reliability of the Perometer in Evaluating Human Knee Volume. Clin. Physiol. Funct. Imaging 2004, 24, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Santin, L.; Ward, L.C. Agreement between Dual Energy X-Ray Absorptiometry and Opto-Electronic Volumetry for Measurement of Fore Volume. Lymphat. Res. Biol. 2014, 3, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Tierney, S.; Aslam, M.; Rennie, K.; Grace, P. Infrared Optoelectronic Volumetry, the Ideal Way to Measure Limb Volume. Eur. J. Vasc. Endovasc. Surg. 1996, 12, 412–417. [Google Scholar] [CrossRef]
- Ward, L.C. Is BIS Ready for Prime Time as the Gold Standard Measure? J. Lymphoedema. 2009, 4, 52–56. [Google Scholar]
- Bonnechère, B.; Sholukha, V.; Jansen, B.; Omelina, L.; Rooze, M.; van Sint Jan, S. Determination of Repeatability of Kinect Sensor. Telemed. J. E Health 2014, 20, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Calderita, L.V.; Bandera, J.P.; Bustos, P.; Skiadopoulos, A. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications. Sensors 2013, 13, 8835–8855. [Google Scholar] [CrossRef] [PubMed]
- Lowes, L.P.; Alfano, L.N.; Yetter, B.A.; Worthen-Chaudhari, L.; Hinchman, W.; Savage, J.; Samona, P.; Flanigan, K.M.; Mendell, J.R. Proof of Concept of the Ability of the Kinect to Quantify Upper Extremity Function in Dystrophinopathy. PLoS Curr. 2013, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.S.; Couch, G.; Couch, T.J.; Kim, W.; Boonn, W.W. Using the Microsoft Kinect for patient Size Estimation and Radiation Dose Normalization: Proof of Concept and Initial Validation. J. Digit. Imaging 2013, 26, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Henseler, H.; Kuznetsova, A.; Vogt, P.; Rosenhahn, B. Validation of the Kinect Device as a New Portable Imaging System for Three-Dimensional Breast Assessment. J. Plast. Reconstr. Aesthet. Surg. 2014, 67, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Ohberg, F.; Zachrisson, A.; Holmner-Rocklöv, Å. Three-Dimensional Camera System for Measuring Volume in Women with Lymphedema Following Breast Cancer Treatment. Lymphat. Res. Biol. 2014, 12, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Adriaenssens, N.; Buyl, R.; Lievens, P.; Fontaine, C.; Lamote, J. Comparative Study between Mobile Infrared Optoelectronic Volumetry with a Perometer and Two Commonly Used Methods for the Evaluation of Volume in Patients with Breast Cancer Related Lymphedema of the arm. Lymphology 2013, 46, 132–143. [Google Scholar] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Lette, J. A Simple and Innovative Device to Measure Volume at Home for Patients with Lymphedema after Breast Cancer. J. Clin. Oncol. 2006, 24, 5434–5440. [Google Scholar] [CrossRef] [PubMed]
- Buffa, R.; Marini, E.; Cabras, S.; Scalas, G.; Floris, G. Patterns of Hand Variation—New Data on a Sardinian Sample. Coll. Antropol. 2007, 31, 325–330. [Google Scholar] [PubMed]
- Azzari, G.; Goulden, M.L.; Rusu, R.B. Rapid Characterization of Vegetation Structure with a Microsoft Kinect Sensor. Sensors 2013, 13, 2384–2398. [Google Scholar] [CrossRef] [PubMed]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Proceedings of the 6th Eurographics Italian Chapter Conference. Eurographics, Pisa, Italy, 2–4 July 2008; pp. 129–136.
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Agreement Between Methods of Measurement with Multiple Observations Per Individual. J. Bioph. Stat. 2007, 17, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bul. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Currier, D.P. Elements of Research in Physical Therapy; Williams & Wilkins: Baltimore, MD, USA, 1990. [Google Scholar]
- Stanton, A.W.; Badger, C.; Sitzia, J. Non-Invasive Assessment of the Lymphedematous Limb. Lymphology 2000, 33, 122–135. [Google Scholar] [PubMed]
- Perrin, M.; Guex, J.J. Edema and Leg Volume: Methods of Assessment. Angiology 2000, 51, 9–12. [Google Scholar] [PubMed]
- Deltombe, T.; Jamart, J.; Recloux, S.; Legrand, C.; Vandenbroeck, N.; Theys, S.; Hanson, P. Reliability and Limits of agreement of Circumferential, Water Displacement, and Optoelectronic Volumetry in the Measurement of Upper Limb Lymphedema. Lymphology 2007, 40, 26–34. [Google Scholar] [PubMed]
- Katz-Leurer, M.; Bracha, J. Test–Retest Reliability of Volume Measurement in Women with Breast Cancerrelated lymphoedema. J. Lymphoedema 2012, 7, 8–13. [Google Scholar]
- Tsai, R.J.; Dennis, L.K.; Lynch, C.F.; Snetselaar, L.G.; Zamba, G.K.; Scott-Conner, C. The Risk of Developing Lymphedema Among Breast Cancer Survivors: A Meta-Analysis of Treatment Factors. Ann. Surg. Oncol. 2009, 16, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Specht, M.C.; Miller, C.L.; Russell, T.A.; Horick, N.; Skolny, M.N.; O’Toole, J.A.; Jammallo, L.S.; Niemierko, A.; Sadek, B.T.; Shenouda, M.N.; et al. Defining a Threshold for Intervention in Breast Cancer-Related Lymphedema: What Level of Volume Increase Predicts Progression? Breast Cancer Res. Treat. 2013, 140, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Buffa, R.; Saragat, B.; Cabras, S.; Rinaldi, A.C.; Marini, E. Accuracy of specific BIVA for the Assessment of body Composition in the United States Population. Plos. One 2013, 8, e58533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, E.; Sergi, G.; Succa, V.; Saragat, B.; Sarti, S.; Coin, A.; Manzato, E.; Buffa, R. Efficacy of Specific Bioelectrical Impedance Vector Analysis (BIVA) for Assessing Body Composition in the Elderly. J. Nutr. Health Aging 2013, 17, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.C.; Essex, T.; Bartlett, M.; Kilbreath, S.; Brookes, D. Bioimpedance Profiling of the Limbs: Update. J. Phys. Conf. Ser. 2010, 224, 1–4. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buffa, R.; Mereu, E.; Lussu, P.; Succa, V.; Pisanu, T.; Buffa, F.; Marini, E. A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume. Sensors 2015, 15, 12342-12357. https://doi.org/10.3390/s150612342
Buffa R, Mereu E, Lussu P, Succa V, Pisanu T, Buffa F, Marini E. A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume. Sensors. 2015; 15(6):12342-12357. https://doi.org/10.3390/s150612342
Chicago/Turabian StyleBuffa, Roberto, Elena Mereu, Paolo Lussu, Valeria Succa, Tonino Pisanu, Franco Buffa, and Elisabetta Marini. 2015. "A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume" Sensors 15, no. 6: 12342-12357. https://doi.org/10.3390/s150612342
APA StyleBuffa, R., Mereu, E., Lussu, P., Succa, V., Pisanu, T., Buffa, F., & Marini, E. (2015). A New, Effective and Low-Cost Three-Dimensional Approach for the Estimation of Upper-Limb Volume. Sensors, 15(6), 12342-12357. https://doi.org/10.3390/s150612342