Identification of Granite Varieties from Colour Spectrum Data
Abstract
:1. Introduction
2. Mathematical Models
2.1. Functional Data Analysis
2.2. Smoothing
2.3. Functional Linear Regression
2.4. Support Vector Machines for Functional Data
3. Identification Methodology for Granite Varieties
3.1. Data Pre-processing
3.2. Expert System Integration in Granite Processing
4. Results and Discussion
5. Conclusions
References
- Nagano, T; Nakashima, S. Study of colors and degrees of weathering of granitic rocks by visible diffuse reflectance spectroscopy. Geochem. J 1989, 23, 75–83. [Google Scholar]
- Prieto, B; Sanmartín, P; Silva, B; Verdú, FMM. An effective method for characterizing colour by contact measurement in granitic rocks. Óptica Pura y Aplicada 2008, 41, 389–396. [Google Scholar]
- Rivas, T; Matías, JM; Taboada, J; Ordóñez, C. Functional ANOVA used to detect reflectance changes in granite following protective treatment. Proceedings of ICCMSE, Crete, Greece, 15–18 September 2008.
- López, M; Martínez, J; Matías, JM; Taboada, J; Vilán, JA. Functional classification of ornamental stone using machine learning techniques. J. Comput. Appl. Math 2010, 234, 1338–1345. [Google Scholar]
- Wang, L. Automatic identification of rocks in thin sections using texture analysis. Math. Geol 2005, 27, 847–865. [Google Scholar]
- Paschos, G. Fast color texture recognition using chromaticity moments. Pattern Recognit. Lett 2000, 21, 837–841. [Google Scholar]
- Kandaswamy, U; Adjeroh, D. Color texture retrieval using the collective color texture model. Proceedings of SPIE—The International Society for Optical Engineering, Boston, MA, USA, 24 October 2005; 5999, Art. No. 59990W. pp. 1–8.
- Motoki, A; Zucco, LL; Sichel, SE; Aires, JR; Petrakis, GH. Development of the technique for digital colour specification and the new nomenclatures of ornamental rock based on the measured colours. Geociencias 2006, 25, 403–415. [Google Scholar]
- Caetano, S; Üstün, B; Hennessy, S; Smeyers-Verbeke, J; Melssen, W; Downey, G; Buydens, L; Heyden, YV. Geographical classification of olive oils by the application of CART and SVM to their FT-IR. J. Chemometr 2007, 21, 324–334. [Google Scholar]
- Zhang, G; Li, H; Fang, B. Discriminating acidic and alkaline enzymes using a random forest model with secondary structure amino acid composition. Process. Biochem 2009, 44, 654–660. [Google Scholar]
- Matías, JM; Ordóñez, C; Taboada, J; Rivas, T. Functional support vector machines and generalized linear models for glacier geomorphology analysis. Int. J. Comput. Math 2009, 86, 275–285. [Google Scholar]
- Park, JI; Baek, SH; Jeong, MK; Bae, SJ. Dual features functional support vector machines for fault detection of rechargeable batteries. IEEE T. Syst. Man Cy. C 2009, 39, 480–485. [Google Scholar]
- Ordóñez, C; Martínez, J; Matías, JM; Reyes, AN; Rodríguez-Pérez, JR. Functional statistical techniques applied to vine leaf water content determination. Math. Comput. Model 2010, 52, 1116–1122. [Google Scholar]
- Ramsay, JO; Silverman, BW. Functional Data Analysis, 2nd ed; Springer: New York, NY, USA, 2005. [Google Scholar]
- Deville, JC. Méthodes statistiques et numériques de l’analyse harmonique. Annales de l'INSEE 1974, 15, 3–101. [Google Scholar]
- Schölkopf, B; Smola, AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Fabrice, R; Villa, N. Support vector machine for functional data classification. Neurocomputing 2006, 69, 730–742. [Google Scholar]
- Vapnik, V. Statistical Learning Theory; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Pearson, K. Contributions to mathematical theory of evolution: II. Skew variation in homogeneous material. Phil. Trans. Roy. Soc 1895, 186, 343–414. [Google Scholar]
- Üstün, B; Melssen, WJ; Buydens, LMC. Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemometr. Intell. Lab 2006, 81, 29–40. [Google Scholar]
- International Commission on Illumination. CIE S 014-4/E:2007. Colorimetry-part 4: CIE 1976 L*a*b* Colour Space; CIE Central Bureau: Vienna, Austria, 2007. [Google Scholar]
- Berns, RS. Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed; Wiley and Sons, Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- López, M; Martínez, J; Matías, JM; Taboada, J; Vilán, JA. Shape functional optimization with restrictions boosted with machine learning techniques. J. Comput. Appl. Math 2010, 234, 2609–2615. [Google Scholar]
ER train (%) | ER validation (%) | |
---|---|---|
Functional Linear Regression | 15.35 | 26.43 |
Functional SVM-PUK | 0 | 0.82 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Araújo, M.; Martínez, J.; Ordóñez, C.; Vilán, J.A. Identification of Granite Varieties from Colour Spectrum Data. Sensors 2010, 10, 8572-8584. https://doi.org/10.3390/s100908572
Araújo M, Martínez J, Ordóñez C, Vilán JA. Identification of Granite Varieties from Colour Spectrum Data. Sensors. 2010; 10(9):8572-8584. https://doi.org/10.3390/s100908572
Chicago/Turabian StyleAraújo, María, Javier Martínez, Celestino Ordóñez, and José Antonio Vilán. 2010. "Identification of Granite Varieties from Colour Spectrum Data" Sensors 10, no. 9: 8572-8584. https://doi.org/10.3390/s100908572
APA StyleAraújo, M., Martínez, J., Ordóñez, C., & Vilán, J. A. (2010). Identification of Granite Varieties from Colour Spectrum Data. Sensors, 10(9), 8572-8584. https://doi.org/10.3390/s100908572