Design Strategies for Aptamer-Based Biosensors
Abstract
:1. Introduction
- Aptamers show high affinity and exquisite specificity for cognate ligands as well as for some ligands which could not be recognized by antibodies, such as ions or small molecules, indicating that employing aptamers as the recognition components may markedly broaden the applications of the corresponding biosensors.
- Once selected, aptamers could be massively synthesized via chemical progress, which is more cost-effective than the production of antibodies. Consequently, the cost for fabrication of aptamer-based biosensors could be cut down.
- Aptamers can more easily be modified chemically than antibodies, especially for the modification of signal moieties, such as electrochemical probes, fluorophores and quenchers, which greatly facilitates the fabrication of biosensors.
- Aptamers are more robust at elevated temperatures, and thermal denaturation of aptamers is reversible. While as proteins, antibodies are more thermally sensitive, and denaturation of antibodies is usually irreversible. Thus use of aptamers offers a wide range of assay conditions.
- The binding of aptamers with their targets usually relies on specific conformations, such as G-quaduplex, hairpin. The conformational variations before and after the formation of aptamer-ligand complexs offer a great possibility and feasibility for the construction of aptamer-based biosensors.
- Owing to their oligonucleotide nature, they could interact with other DNA or RNA molecules, such as DNAzymes, thus fabricate versatile oligonucleotides machines for either biosensing or other clinical applications.
- Nucleic acid aptamers can hybridize with their complementary sequences, which can be used to create the antidotes.
2. Strategies for the Construction of Aptamer-Based Biosensors
2.1. Target-Induced Structure Switching (TISS) Mode
- The position, quantity or status of the signal moieties, which covalently bind to the end of aptamers or adsorbed on the aptamers via electrostatic force, stacking, hydrogen bond, etc.;
- The size or weight of aptamers, along with the formation of aptamer-target complexes;
- Other properties of aptamers, such as the ability to stabilize gold nanoparticles (AuNPs), etc.
2.2. Sandwich or Sandwich-Like Mode
2.3. Target-Induced Dissociation/Displacement (TID) Mode
2.4. Competitive Replacement Mode
2.5. Aptamer-Based DNA/RNA Machine in Biosensor Design
2.5.1. Aptamer-aptamer combination
2.5.2. Aptazyme
3. Conclusions
Acknowledgments
References
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [Google Scholar]
- Irvine, D.; Tuerk, C.; Gold, L. Selexion: Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. J. Mol. Biol 1991, 222, 739–761. [Google Scholar]
- Que-Gewirth, N.S.; Sullenger, B.A. Gene therapy progress and prospects: RNA aptamers. Gene Therapy 2007, 14, 283–291. [Google Scholar]
- Song, S.; Wang, L.; Li, J.; Zhao, J.; Fan, C. Aptamer-based biosensors. Trends Anal. Chem 2008, 27, 108–117. [Google Scholar]
- Dollins, C.M.; Nair, S.; Sullenger, B.A. Aptamers in immunotherapy. Hum. Gene Ther 2008, 19, 443–450. [Google Scholar]
- Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem 2006, 78, 2918–2924. [Google Scholar]
- Smith, J.E.; Medley, C.D.; Tang, Z.; Shangguan, D.; Lofton, C.; Tan, W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem 2007, 79, 3075–3082. [Google Scholar]
- Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.C.; Chen, H.W.; Mallikaratchy, P.; Sefah, K.; Yang, C.J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci 2006, 103, 11838–11843. [Google Scholar]
- Guo, S.; Dong, S. Biomolecule-nanoparticle hybrids for electrochemical biosensors. Trends in Anal. Chem 2009, 28, 96–109. [Google Scholar]
- Willner, I.; Shlyahovsky, B.; Zayats, M.; Willner, B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev 2008, 37, 1153–1165. [Google Scholar]
- Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem 2008, 390, 1023–1032. [Google Scholar]
- Strehlitz, B.; Nikolaus, N.; Stoltenburg, R. Protein detection with aptamer biosensors. Sensors 2008, 8, 4296–4307. [Google Scholar]
- Mok, W.; Li, Y. Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 2008, 8, 7050–7084. [Google Scholar]
- Sefah, K.; Phillips, J.A.; Xiong, X.; Meng, L.; Van Simaeys, D.; Chen, H.; Martin, J.; Tan, W. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 2009, 134, 1765–1775. [Google Scholar]
- Han, K.; Chen, L.; Lin, Z.; Li, G. Target induced dissociation (TID) strategy for the development of electrochemical aptamer-based biosensor. Electrochem. Commun 2009, 11, 157–160. [Google Scholar]
- Liu, J.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed 2006, 45, 90–94. [Google Scholar]
- Zhao, W.; Chiuman, W.; Lam, J.C.; McManus, S.A.; Chen, W.; Cui, Y.; Pelton, R.; Brook, M.A.; Li, Y. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. J. Am. Chem. Soc 2008, 130, 3610–3618. [Google Scholar]
- Ferapontova, E.E.; Olsen, E.M.; Gothelf, K.V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J. Am. Chem. Soc 2008, 130, 4256–4258. [Google Scholar]
- Xiao, Y.; Lubin, A.A.; Heeger, A.J.; Plaxco, K.W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed 2005, 44, 5456–5459. [Google Scholar]
- Wang, J.; Meng, W.; Zheng, X.; Liu, S.; Li, G. Combination of aptamer with gold nanoparticles for electrochemical signal amplification: Application to sensitive detection of platelet-derived growth factor. Biosens. Bioelectron 2009, 24, 1598–1602. [Google Scholar]
- Radi, A.-E.; Sánchez, J.L.A.; Baldrich, E.; O’Sullivan, C.K. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc 2006, 128, 117–124. [Google Scholar]
- Mir, M.; Jenkins, A.T.A.; Katakis, I. Ultrasensitive detection based on an aptamer beacon electron transfer chain. Electrochem. Commun 2008, 10, 1533–1536. [Google Scholar]
- Zuo, X.; Song, S.; Zhang, J.; Pan, D.; Wang, L.; Fan, C. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc 2007, 129, 1042–1043. [Google Scholar]
- Xiao, Y.; Piorek, B.D.; Plaxco, K.W.; Heeger, A.J. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc 2005, 127, 17990–17991. [Google Scholar]
- Lai, R.Y.; Plaxco, K.W.; Heeger, A.J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal. Chem 2007, 79, 229–233. [Google Scholar]
- Vicens, M.C.; Sen, A.; Vanderlaan, A.; Drake, T.J.; Tan, W. Investigation of molecular beacon aptamer-based bioassay for platelet-derived growth factor detection. ChemBioChem 2005, 6, 900–907. [Google Scholar]
- Li, Y.; Qi, H.; Peng, Y.; Yang, J.; Zhang, C. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem. Commun 2007, 9, 2571–2575. [Google Scholar]
- Chen, J.; Jiang, J.; Gao, X.; Liu, G.; Shen, G.; Yu, R. A new aptameric biosensor for cocaine based on surface-enhanced raman scattering spectroscopy. Chem. Eur. J 2008, 14, 8374–8382. [Google Scholar]
- Wang, W.; Chen, C.; Qian, M.; Zhao, X. Aptamer biosensor for protein detection based on guanine-quenching. Sens. Actuat. B 2008, 129, 211–217. [Google Scholar]
- Yang, C.J.; Jockusch, S.; Vicens, M.; Turro, N. J.; Tan, W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci 2005, 102, 17278–17283. [Google Scholar]
- Li, H.; Rothberg, L.J. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci 2004, 101, 14036–14039. [Google Scholar]
- Li, H.; Rothberg, L.J. Label-Free Colorimetric Detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc 2004, 126, 10958–10961. [Google Scholar]
- Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G.; Fan, C. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater 2007, 19, 3943–3946. [Google Scholar]
- Wang, J.; Zhou, H.S. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal. Chem 2008, 80, 7174–7178. [Google Scholar]
- Min, K.; Cho, M.; Han, S.Y.; Shim, Y.B.; Ku, J.; Ban, C. A simple and direct electrochemical detection of interferon-using its RNA and DNA aptamers. Biosens. Bioelectron 2008, 23, 1819–1824. [Google Scholar]
- Schlensog, M.; Gronewold, T.; Tewes, M.; Famulok, M.; Quandt, E. A Love-wave biosensor using nucleic acids as ligands. Sens. Actuat. B 2004, 101, 308–315. [Google Scholar]
- Fang, L.; Lu, Z.; Wei, H.; Wang, E. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal. Chim. Acta 2008, 628, 80–86. [Google Scholar]
- Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal. Chem 2007, 79, 1466–1473. [Google Scholar]
- Deng, C.; Chen, J.; Nie, Z.; Wang, M.; Chu, X.; Chen, X.; Xiao, X.; Lei, C.; Yao, S. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal. Chem 2009, 81, 739–745. [Google Scholar]
- Kang, Y.; Feng, K.; Chen, J.; Jiang, J.; Shen, G.; Yu, R. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry 2008, 73, 76–81. [Google Scholar]
- He, P.; Shen, L.; Cao, Y.; Li, D. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal. Chem 2007, 79, 8024–8029. [Google Scholar]
- Zhang, S.; Xia, J.; Li, X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem 2008, 80, 8382–8388. [Google Scholar]
- Chen, Z.; Li, G.; Zhang, L.; Jiang, J.; Li, Z.; Peng, Z.; Deng, L. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal. Bioanal. Chem 2008, 392, 1185–1188. [Google Scholar]
- Yoshizumi, J.; Kumamoto, S.; Nakamura, M.; Yamana, K. Target-induced strand release (TISR) from aptamer–DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 2008, 133, 323–325. [Google Scholar]
- Wu, Z.-S.; Guo, M.-M.; Zhang, S.-B.; Chen, C.-R.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal. Chem 2007, 79, 2933–2939. [Google Scholar]
- Feng, K.; Sun, C.; Kang, Y.; Chen, J.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochem. Commun 2008, 10, 531–535. [Google Scholar]
- Fan, H.; Chang, Z.; Xing, R.; Chen, M.; Wang, Q.; He, P.; Fang, Y. An electrochemical aptasensor for detection of thrombin based on target protein-induced strand displacement. Electroanalysis 2008, 20, 2113–2117. [Google Scholar]
- Lu, Y.; Li, X.; Zhang, L.; Yu, P.; Su, L.; Mao, L. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal. Chem 2008, 80, 1883–1890. [Google Scholar]
- Peng, Y.; Zhang, D.; Li, Y.; Qi, H.; Gao, Q.; Zhang, C. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Biosens. Bioelectron 2009, 25, 94–99. [Google Scholar]
- Chen, J.; Liu, X.; Feng, K.; Liang, Y.; Jiang, J.; Shen, G.; Yu, R. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens. Bioelectron 2008, 24, 66–71. [Google Scholar]
- Cho, H.; Baker, B.R.; Wachsmann-Hogiu, S.; Pagba, C.V.; Laurence, T.A.; Lane, S.M.; Lee, L.P.; Tok, J.B. Aptamer-based SERRS sensor for thrombin detection. Nano Lett 2008, 8, 4386–4390. [Google Scholar]
- Zhao, W.; Chiuman, W.; Brook, M.A.; Li, Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 2007, 8, 727–731. [Google Scholar]
- Lee, M.; Walt, D.R. A fiber-optic microarray biosensor using aptamers as receptors. Anal. Biochem 2000, 282, 142–146. [Google Scholar]
- Hansen, J.A.; Wang, J.; Kawde, A.-N.; Xiang, Y.; Gothelf, K.V.; Collins, G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc 2006, 128, 2228–2229. [Google Scholar]
- de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B. J. Am. Chem. Soc 2007, 129, 3808–3809. [Google Scholar]
- de-los-Santos-Alvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B. Biosens. Bioelectron 2009, 24, 2547–2553. [Google Scholar]
- Zhu, Z.; Yang, R.; You, M.; Zhang, X.; Wu, Y.; Tan, W. Single-walled carbon nanotube as an effective quencher. Anal. Bioanal. Chem 2010, 396, 73–83. [Google Scholar]
- Yang, R.; Tang, Z.; Yan, J.; Kang, H.; Kim, Y.; Zhu, Z.; Tan, W. Noncovalent assembly of carbon nanotubes and single-stranded DNA: An effective sensing platform for probing biomolecular interactions. Anal. Chem 2008, 80, 7408–7413. [Google Scholar]
- Yoshida, W.; Mochizuki, E.; Takase, M.; Hasegawa, H.; Morita, Y.; Yamazaki, H.; Sode, K.; Ikebukuro, K. Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens. Bioelectron 2009, 24, 1116–1120. [Google Scholar]
- Yoshida, W.; Sode, K.; Ikebukuro, K. Aptameric enzyme subunit for homogeneous protein sensing. Nucleic Acids Symp. Ser 2007, 51, 99–100. [Google Scholar]
- Yoshida, W.; Sode, K.; Ikebukuro, K. Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal. Chem 2006, 78, 3296–3303. [Google Scholar]
- Lu, N.; Shao, C.; Deng, Z. Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chem. Commun 2008, 6161–6163. [Google Scholar]
- Li, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J. Am. Chem. Soc 2007, 129, 5804–5805. [Google Scholar]
- Liu, J.; Lu, Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem 2004, 76, 1627–1632. [Google Scholar]
- Lee, J.F.; Hesselberth, J.R.; Meyers, L.A.; Ellington, A.D. Aptamer database. Nucleic Acids Res 2004, 32, D95–D100. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Han, K.; Liang, Z.; Zhou, N. Design Strategies for Aptamer-Based Biosensors. Sensors 2010, 10, 4541-4557. https://doi.org/10.3390/s100504541
Han K, Liang Z, Zhou N. Design Strategies for Aptamer-Based Biosensors. Sensors. 2010; 10(5):4541-4557. https://doi.org/10.3390/s100504541
Chicago/Turabian StyleHan, Kun, Zhiqiang Liang, and Nandi Zhou. 2010. "Design Strategies for Aptamer-Based Biosensors" Sensors 10, no. 5: 4541-4557. https://doi.org/10.3390/s100504541
APA StyleHan, K., Liang, Z., & Zhou, N. (2010). Design Strategies for Aptamer-Based Biosensors. Sensors, 10(5), 4541-4557. https://doi.org/10.3390/s100504541