Setting Conservation Priorities in a Widespread Species: Phylogeographic and Physiological Variation in the Lake Chub, Couesius plumbeus (Pisces: Cyprinidae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phylogeographic Variation in Lake Chub
2.2. Physiological Variation in Lake Chub
Parameter | Summary of differences |
---|---|
CTmax | Significant effects of population and acclimation temperature, no interaction, LHS > both AWS and GL at 10 °C |
CTmin | Significant effects of population and acclimation temperature, no interaction, AWS consistently highest CTmin at all temperatures, but significant only at 25 °C compared to GL |
ΔCT | Significant effect of population and acclimation temperature, no interaction; AWS with consistently lowest ΔCT, and significantly lower ΔCT at 10 and 25 °C. |
CS | Significant effects of population, acclimation temperature, significant interaction; AWS showed no increase in activity with decreasing acclimation temperature, GL and LHS increased activity by 71% and 141%, respectively, significantly greater than AWS at 5 and 10 °C |
COX | Significant effects of population, acclimation temperature, significant interaction; AWS showed no increase in activity with decreasing acclimation temperature, GL and LHS increased activity by 86% and 133%, respectively, significantly greater than AWS at 5 and 10 °C (Green Lake only) |
LDH | Significant effects of population, but not of acclimation temperature, no interaction; AWS showed greatest levels of activity at 10 and 25 °C, but not significant differences |
PK | No significant effects of population, acclimation temperature, no interaction |
PC | Significant effects of population, acclimation temperature, no significant interaction; AWS showed no change in PC with acclimation temperature, GL and LHS increased PC with decreasing acclimation temperature, but no significant pairwise differences. |
2.3. Designatable Units in Lake Chub
3. Experimental Section
3.1. Fish Collections
3.2. Molecular Analysis
3.3. Temperature Acclimation Experiments
3.4. Statistical Analyses
3.5. Evaluation against COSEWIC DU Criteria
4. Conclusions
Supplementary Material
Acknowledgments
References
- Meffe, G.K.; Carroll, C.R. Principles of Conservation Biology; Sinauer Associates: Sunderland, MA, USA, 1994; p. 600. [Google Scholar]
- Hilborn, R.; Quinn, T.P.; Schindler, D.E.; Rogers, D.E. Biocomplexity and fisheries sustainability. Proc. Natl. Acad. Sci. USA 2003, 100, 6564–6568. [Google Scholar] [CrossRef]
- Brito, D. Overcoming the Linnean shortfall: Data deficiency and biological survey priorities. Basic Appl. Ecol. 2010, 11, 709–713. [Google Scholar] [CrossRef]
- Gaston, K.J.; Fuller, R.A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 2008, 23, 14–19. [Google Scholar] [CrossRef]
- Hughes, J.B.; Daily, G.C.; Ehrlich, P.R. Population diversity: Its extent and extinction. Science 1997, 278, 689–692. [Google Scholar] [CrossRef]
- Luck, G.W.; Daily, G.C.; Ehrlich, P.R. Population diversity and ecosystem services. Trends Ecol. Evol. 2003, 18, 331–336. [Google Scholar] [CrossRef]
- Millar, C.I.; Libby, W.J. Strategies for Conserving Clinal, Ecotypic, and Disjunct Population Diversity in Widespread Species. In Genetics and Conservation of Rare Plants; Falk, D.A., Holsinger, K.E., Eds.; Oxford University Press: New York, NY, USA, 1991; pp. 149–170. [Google Scholar]
- United States Endangered Species Act. Title 16 United States Code, Sections 1531-1544. Available online: http://www.biologicaldiversity.org/campaigns/esa/esatext.html (accessed on 1 March 2013).
- COSEWIC, Guidelines for recognizing designatable units. Appendix F5. In Operations and Procedures Manual; Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2012.
- Lee, D.S.; Gilbert, C.R.; Hocutt, C.H.; Jenkins, R.E.; McAllister, D.E.; Stauffer, J.R., Jr. Atlas of North American Freshwater Fishes; North Carolina State Museum of Natural History: Raleigh, NC, USA, 1980. [Google Scholar]
- Dymond, J.R. A list of the freshwater fishes of Canada east of the Rocky Mountains. Roy. Ontario Mus. Zool. Misc. Pub. 1947, 1, 36. [Google Scholar]
- Lindsey, C.C. Distribution and taxonomy of fishes of the Mackenzie Basin of British Columbia. J. Fish. Res. Board Can. 1956, 13, 759–789. [Google Scholar] [CrossRef]
- COSEWIC, COSEWIC Assessment and Status Report on the Lake Chub (Couesius plumbeus) in Canada. Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2004.
- Darveau, C.; Taylor, E.B.; Schulte, P.M. Thermal physiology of warm spring colonists: Variation among Lake Chub (Cyprinidae: Couesius plumbeus) populations. Physiol. Biochem. Zool. 2012, 85, 607–617. [Google Scholar] [CrossRef]
- Bernatchez, L.; Dodson, J.J. Phylogeographic structure in mitochondrial DNA of the lake whitefish (Coregonus clupeaformis) and its relation to Pleistocene glaciations. Evolution 1991, 45, 1016–1035. [Google Scholar] [CrossRef]
- Turgeon, J.; Bernatchez, L. Mitochondrial DNA phylogeography of lake cisco (Coregonus artedi): Evidence supporting extensive secondary contacts between two glacial races. Mol. Ecol. 2001, 10, 987–1004. [Google Scholar] [CrossRef]
- Wilson, C.C.; Hebert, P.D.N. Phylogeography and postglacial dispersal oflake trout(Salvelinus namaycush) in North America. Can. J. Fish. Aquat. Sci. 1998, 55, 1010–1024. [Google Scholar]
- Lee-Yaw, J.T.; Irwin, J.A.; Green, D.M. Postglacial range expansion from northern refugia by the wood frog. Rana sylvatica. Mol. Ecol. 2008, 17, 867–884. [Google Scholar] [CrossRef]
- McPhail, J.D. Freshwater Fishes of British Columbia; University of Alberta Press: Edmonton, Canada, 2007. [Google Scholar]
- Maguire, K.C.; Stigall, A.Y. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeog. Palaeoclim. Palaeoecol. 2008, 267, 175–184. [Google Scholar] [CrossRef]
- Houston, D.D.; Shiozawa, D.K.; Riddle, B.R. Phylogenetic relationships of the western North American cyprinid genus Richardsonius, with an overview of phylogeographic structure. Mol. Phylog. Evol. 2010, 55, 259–273. [Google Scholar] [CrossRef]
- Douglas, M.E.; Douglas, M.R.; Schuett, G.W.; Porass, L.W.; Thomason, B.L. Genealogical concordance between mitochondrial and nuclear DNAs supports species recognition of the panamint rattlesnake (Crotalus mitchellii stephensi). Copeia 2007, 2007, 920–932. [Google Scholar]
- The Zoogeography of North American Freshwater Fishes; Hocutt, C.H.; Wiley, E.O. (Eds.) John Wiley and Sons: New York, NY, USA, 1986.
- COSEWIC. COSEWIC Assessment and Update Status Report on the Lake Sturgeon (Acipenser fulvescens) in Canada. Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2007. Available online: http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=840#ot18/ (accessed on 15 January 2013).
- COSEWIC, Designatable units at the appropriate scale for Lake Whitefish (Coregonus clupeaformis) in Canada. Committee on the Status of Endangered wildlife in Canada: Ottawa, ON, Canada, 2008.
- COSEWIC. COSEWIC Assessment and Update Status Report on the Atlantic Salmon (Salmo salar) in Canada. Committee on the Status of Endangered Wildlife in Canada: Ottawa, ON, Canada, 2011. Available online: http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=672#ot18/ (accessed on 15 January 2013).
- Allendorf, F.W.; Bayles, D.; Bottom, D.L.; Currens, K.P.; Frissell, C.A.; Hankin, D.; Lichatowich, J.A.; Nehlsen, W.; Trotter, P.C.; Williams, T.H. Prioritizing Pacific salmon stocks for conservation. Conserv. Biol. 1997, 11, 140–152. [Google Scholar]
- Petit, R.J.; El Mousadik, A.; Pons, O. Identifying populations for conservation based on genetic markers. Conserv. Biol. 1998, 12, 844–855. [Google Scholar] [CrossRef]
- Taylor, E.B.; Tamkee, P.; Keeley, E.; Parkinson, E. Conservation prioritization in widespread species: The use of genetic and morphological data to assess population distinctiveness in rainbow trout (Oncorhynchus mykiss) from British Columbia, Canada. Evol. Appl. 2011, 4, 100–115. [Google Scholar] [CrossRef]
- Bowen, B.W. Preserving genes, species, or ecosystems? Healing the fractured foundations ofconservation policy. Mol. Ecol. 1999, 8, S5–S10. [Google Scholar] [CrossRef]
- Bernatchez, L.; Wilson, C.C. Comparative phylogeography of Nearctic and Palearctic fishes. Mol. Ecol. 1998, 7, 431–452. [Google Scholar] [CrossRef]
- Moritz, C.; Faith, D.P. Comparative phylogeography and the identification of genetically divergent areas for conservation. Mol. Ecol. 2002, 7, 419–429. [Google Scholar] [CrossRef]
- Dowling, T.E.; Tibbets, C.A.; Minckley, W.L.; Smith, G.R. Evolutionary relationships of the plagopterins (Teleostei: Cyprinidae) from cytochrome b sequences. Copeia 2002, 2002, 665–678. [Google Scholar]
- Palumbi, S.R. Nucleic Acids II: The Polymerase Chain Reaction. In Molecular Systematics, 2nd; Hillis, D.M., Moritz, C., Mable, B.K., Eds.; Sinauer Associates: Sunderland, MA, USA, 1996; pp. 205–247. [Google Scholar]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, K.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar]
- Smith, G.R.; Dowling, T.E.; Gobalet, K.W.; Lugaski, T.; Shiozawa, D.K.; Evans, R.P. Biogeography and Timing of Evolutionary Events among Great Basin Fishes. In Great Basin Aquatic Systems History; Hershler, R., Madsen, D.B., Currey, D.R., Eds.; Smithsonian Contributions to the Earth Sciences, Smithsonian Institution Press: Washington, DC, USA, 2002; Number 33; pp. 175–234. [Google Scholar]
- Rambault, A.; Drummond, A.J. Bayesian evolutionary analysis of viruses: A practical introduction to BEAST. 2009. Available online: http://beast.bio.ed.ac.uk/Main_Page (accessed on 8 December 2012).
- Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Taylor, E.B.; Darveau, C.-A.; Schulte, P.M. Setting Conservation Priorities in a Widespread Species: Phylogeographic and Physiological Variation in the Lake Chub, Couesius plumbeus (Pisces: Cyprinidae). Diversity 2013, 5, 149-165. https://doi.org/10.3390/d5020149
Taylor EB, Darveau C-A, Schulte PM. Setting Conservation Priorities in a Widespread Species: Phylogeographic and Physiological Variation in the Lake Chub, Couesius plumbeus (Pisces: Cyprinidae). Diversity. 2013; 5(2):149-165. https://doi.org/10.3390/d5020149
Chicago/Turabian StyleTaylor, Eric B., Charles-A. Darveau, and Patricia M. Schulte. 2013. "Setting Conservation Priorities in a Widespread Species: Phylogeographic and Physiological Variation in the Lake Chub, Couesius plumbeus (Pisces: Cyprinidae)" Diversity 5, no. 2: 149-165. https://doi.org/10.3390/d5020149
APA StyleTaylor, E. B., Darveau, C. -A., & Schulte, P. M. (2013). Setting Conservation Priorities in a Widespread Species: Phylogeographic and Physiological Variation in the Lake Chub, Couesius plumbeus (Pisces: Cyprinidae). Diversity, 5(2), 149-165. https://doi.org/10.3390/d5020149