The Role of Ecological Niche Divergence in Shaping Hybridization Patterns in Testudo graeca
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Sampling
2.3. Laboratory Procedures
2.4. Genetic Diversity Analysis
2.5. Population Structure Analysis
2.6. Population Differentiation and Gene Flow
2.7. Identification of Dispersal Events
2.8. Ecological Niche Modeling
2.9. Niche Divergence
3. Results
3.1. Genetic Diversity
3.2. Population Structure
3.3. Identification of Dispersal Events
3.4. Habitat Suitability and Niche Modeling
3.5. Niche Divergence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESU | Evolutionary Significant Units |
ENM | Ecological Niche Modeling |
DOE | Department of Environment |
ODbL | Open Database License |
DEM | Digital Elevation Model |
IFRWO | Iranian Forests, Rangelands, and Watershed Management Organization |
ESM | Ensembles of Small Models |
SDM | Species Distribution Model |
RF | Random Forest |
GLM | Generalized Linear Model |
MaxEnt | Maximum Entropy |
GBM | Generalized Boosting Model |
MARS | Multivariate Adaptive Regression Splines |
TSS | True Skill Statistics |
AUC | Area Under Curve |
ROC | Receiver Operating Characteristic |
HWE | Hardy–Weinberg Equilibrium |
MCMC | Markov Chain Monte Carlo |
Na | Number of alleles |
Ne | Number of effective alleles |
PIC | Polymorphic Information Content |
Ho | Heterozygosity (observed) |
He | Heterozygosity (expected) |
uHe | unbiased Heterozygosity (expected) |
IBD | Isolation by Distance |
INSF | Iran National Science Foundation |
PCA-env | Environmental principal component analysis |
References
- Casacci, L.P.; Barbero, F.; Balletto, E. The “Evolutionarily Significant Unit” concept and its applicability in biological conservation. Ital. J. Zool. 2013, 81, 182–193. [Google Scholar] [CrossRef]
- Hoelzel, A.R. Where to now with the evolutionarily significant unit? Trends Ecol. Evol. 2023, 38, 1134–1142. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Ikeda, D.; Max, T.L.; Allan, G.J.; Lau, M.K.; Shuster, S.M.; Whitham, T.G. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 2017, 23, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, F.; Hemami, M.R.; Malekian, M.; Fakheran, S.; Martínez-Freiría, F. Species versus within-species niches: A multi-modelling approach to assess range size of a spring-dwelling amphibian. Sci. Rep. 2021, 11, 597. [Google Scholar] [CrossRef]
- Razgour, O.; Forester, B.; Taggart, J.B.; Bekaert, M.; Juste, J.; Ibanez, C.; Puechmaille, S.J.; Novella-Fernandez, R.; Alberdi, A.; Manel, S. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. USA 2019, 116, 10418–10423. [Google Scholar] [CrossRef]
- Menon, M.; Landguth, E.; Leal-Saenz, A.; Bagley, J.C.; Schoettle, A.W.; Wehenkel, C.; Flores-Renteria, L.; Cushman, S.A.; Waring, K.M.; Eckert, A.J. Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evol. Appl. 2020, 13, 195–209. [Google Scholar] [CrossRef]
- Sanmartín, I. Historical biogeography: Evolution in time and space. Evo. Edu. Outreach 2012, 5, 555–568. [Google Scholar] [CrossRef]
- Oboudi, R.; Malekian, M.; Khosravi, R.; Fadakar, D.; Adibi, M.A. Genetic structure and ecological niche segregation of Indian gray mongoose (Urva edwardsii) in Iran. Ecol. Evol. 2021, 11, 14813–14827. [Google Scholar] [CrossRef]
- Li, E.; Wang, Y.; Liu, K.; Liu, Y.; Xu, C.; Dong, W.; Zhang, Z. Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus, Oleaceae). Commun. Biol. 2024, 7, 603. [Google Scholar] [CrossRef] [PubMed]
- Mashkaryan, V.; Vamberger, M.; Arakelyan, M.; Hezaveh, N.; Carretero, M.A.; Corti, C.; Harris, D.J.; Fritz, U. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib.-Reptil. 2013, 34, 337–351. [Google Scholar] [CrossRef]
- Böhm, M.; Collen, B.; Baillie, J.E.; Bowles, P.; Chanson, J.; Cox, N.; Hammerson, G.; Hoffmann, M.; Livingstone, S.R.; Ram, M.; et al. The conservation status of the world’s reptiles. Biol. Conserv. 2013, 157, 372–385. [Google Scholar] [CrossRef]
- Stanford, C.B.; Iverson, J.B.; Rhodin, A.G.; van Dijk, P.P.; Mittermeier, R.A.; Kuchling, G.; Berry, K.H.; Bertolero, A.; Bjorndal, K.A.; Blanck, T.E.; et al. Turtles and Tortoises Are in Trouble. Curr. Biol. 2020, 30, R721–R735. [Google Scholar] [CrossRef]
- Van der Kuyl, A.C.; Ballasina, D.L.; Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 2005, 5, 29. [Google Scholar] [CrossRef]
- Fritz, U.; Hundsdörfer, A.; Široký, P.; Auer, M.; Kami, H.; Lehmann, J.; Mazanaeva, L.; Türkozan, O.; Wink, M. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphib.-Reptil. 2007, 28, 97–121. [Google Scholar] [CrossRef]
- Fritz, U.; Harris, D.J.; Fahd, S.; Rouag, R.; Martínez, E.G.; Casalduero, A.G.; Široký, P.; Kalboussi, M.; Jdeidi, T.B.; Hundsdörfer, A.K. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib.-Reptil. 2009, 30, 63–80. [Google Scholar] [CrossRef]
- Mikulíček, P.; Jandzik, D.; Fritz, U.; Schneider, C.; Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 2013, 108, 151–160. [Google Scholar] [CrossRef][Green Version]
- Javanbakht, H.; Ihlow, F.; Jablonski, D.; Široký, P.; Fritz, U.; Rödder, D.; Sharifi, M.; Mikulíček, P. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 2017, 121, 627–640. [Google Scholar] [CrossRef][Green Version]
- Ranjbar, N.; Malekian, M.; Ashrafzadeh, M.R.; Hemami, M.R. Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran. Sci. Rep. 2022, 12, 13579. [Google Scholar] [CrossRef]
- Bradburd, G.S.; Coop, G.M.; Ralph, P.L. Inferring continuous and discrete population penetic structure across space. Genetics 2018, 210, 33–52. [Google Scholar] [CrossRef]
- Blankers, T.; Shaw, K.L. The biogeographic and evolutionary processes shaping population divergence in Laupala. Mol. Ecol. 2024, 33, e17444. [Google Scholar] [CrossRef] [PubMed]
- Johannesson, K.; Le Moan, A.; Perini, S.; André, C.A. darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 2020, 35, 1021–1036. [Google Scholar] [CrossRef]
- Crandall, K.A.; Bininda-Emonds, O.R.; Mace, G.M.; Wayne, R.K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 2000, 15, 290–295. [Google Scholar] [CrossRef]
- de Guia, A.P.O.; Saitoh, T. The gap between the concept and definitions in the Evolutionarily Significant Unit: The need to integrate neutral genetic variation and adaptive variation. Ecol. Res. 2007, 22, 604–612. [Google Scholar] [CrossRef]
- Hosseinian Yousefkhani, S.S.; Faizi, H.; Taghipour, A.A. Modeling ecological differentiation in the distribution patterns of two subspecies of the Greek Tortoise, Testudo graeca (Reptilia: Testudinidae) in Iran. Zool. Middle East 2024, 71, 22–31. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Filippi, E.; Rugiero, L.; Capula, M.; Burke, R.L.; Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 2010, 9, 54–60. [Google Scholar] [CrossRef]
- Dutton, P.H.; Stewart, K. A method for sampling hatchling sea turtles for the development of a genetic tag. MTN 1995, 138, 3–7. [Google Scholar]
- Faircloth, B.C. msatcommander: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 2008, 8, 92–94. [Google Scholar] [CrossRef]
- Brownstein, M.J.; Carpten, J.D.; Smith, J.R. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. Biotechniques 1996, 20, 1004–1006. [Google Scholar] [CrossRef]
- Edwards, T.; Goldberg, C.S.; Kaplan, M.E.; Schwalbe, C.R.; Swann, D.E. PCR primers for microsatellite loci in the desert tortoise (Gopherus agassizii, Testudinidae). Mol. Ecol. Notes 2003, 3, 589–591. [Google Scholar] [CrossRef]
- King, T.L.; Julian, S.E. Conservation of microsatellite DNA flanking sequence across 13 emydid genera assayed with novel bog turtle (Glyptemys muhlenbergii) loci. Conserv. Genet. 2004, 5, 719–725. [Google Scholar] [CrossRef]
- Schwartz, T.S.; Osentoski, M.; Lamb, T.; Karl, S.A. Microsatellite loci for the North American tortoises (genus Gopherus) and their applicability to other turtle species. Mol. Ecol. Notes 2003, 3, 283–286. [Google Scholar] [CrossRef]
- Forlani, A.; Crestanello, B.; Mantovani, S.; Livoreil, B.; Zane, L.; Bertorelle, G.; Congiu, L. Identification and characterization of microsatellite markers in Hermann’s tortoise (Testudo hermanni, Testudinidae). Mol. Ecol. Notes 2005, 5, 228–230. [Google Scholar] [CrossRef]
- Perez, M.; Roger, B.; Lambourdiere, J.; Samadi, S.; Boisselier, M.C. Isolation and characterization of eight microsatellite loci for the study of gene flow between Testudo marginata and Testudo weissingeri (Testudines: Testudinidae). Mol. Ecol. Notes 2006, 6, 1096–1098. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T.B.J.; Ye, Z.H.; Mao, J.X. POPGENE, the User Friendly Shareware for Population Genetic Analysis; Molecular Biology and Biotechnology Centre, University of Alberta: Edmonton, AB, Canada, 1997; Volume 10, pp. 295–301. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Francois, O.; Durand, E. Spatially explicit Bayesian clustering models in population genetics. Mol. Ecol. Resour. 2010, 10, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Rosenberg, N. distruct: A program for the graphical display of population structure: PROGRAM NOTE. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population-Structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Piry, S.; Alapetite, A.; Cornuet, J.-M.; Paetkau, D.; Baudouin, L.; Estoup, A. GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. J. Hered. 2004, 95, 536–539. [Google Scholar] [CrossRef]
- Rannala, B.; Mountain, J.L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 1997, 94, 9197–9201. [Google Scholar] [CrossRef] [PubMed]
- Anadón, J.D.; Giménez, A.; Martínez, M.; Palazón, J.A.; Esteve, M.A. Assessing changes in habitat quality due to land use changes in the spur-thighed tortoise Testudo graeca using hierarchical predictive habitat models. Divers. Distrib. 2007, 13, 324–331. [Google Scholar] [CrossRef]
- Anadón, J.; Giménez, A.; Graciá, E.; Pérez, I.; Ferrández, M.; Fahd, S.; El Mouden, H.; Kalboussi, M.; Jdeidi, T.; Larbes, S.; et al. Distribution of Testudo graeca in the western Mediterranean according to climatic factors. Amphib.-Reptil. 2012, 33, 285–296. [Google Scholar] [CrossRef]
- Nekrasova, O.; Tytar, V.; Pupins, M.; Čeirāns, A.; Skute, A. GIS modelling of the distribution of terrestrial tortoise species: Testudo graeca and Testudo hermanni (Testudines, Testudinidae) of Eastern Europe in the context of climate change. Zoodiversity 2021, 55, 387–394. [Google Scholar] [CrossRef]
- Zadhoush, B.; Rezaei, H.; Rajabizadeh, M. Distribution modeling and evaluation of the habitat integrity of Testudo graeca zarudnyi (Testudines: Testudinidae) in Central and Southeastern Iran. J. Wildl. Biodivers. 2021, 5, 15–27. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 2015, 6, 1210–1218. [Google Scholar] [CrossRef]
- Breiner, F.T.; Nobis, M.P.; Bergamini, A.; Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 2018, 9, 802–808. [Google Scholar] [CrossRef]
- Naimi, B. Package Usdm: Uncertainty Analysis for Species Distribution Models. 2017. Available online: https://cran.r-project.org/web/packages/usdm/usdm.pdf (accessed on 20 April 2024).
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Graciá, E.; Vargas-Ramírez, M.; Delfino, M.; Anadón, J.D.; Giménez, A.; Fahd, S.; Corti, C.; Jdeidi, T.B.; Fritz, U. Expansion after expansion: Dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines: Testudinidae). Biol. J. Linn. Soc. 2017, 121, 641–654. [Google Scholar] [CrossRef]
- Geffen, E.; Mendelssohn, H. Home range use and seasonal movements of the Egyptian tortoise (Testudo kleinmanni) in the northwestern Negev. Herpetologica 1988, 44, 354–359. [Google Scholar]
- Díaz-Paniagua, C.; Keller, C.; Andreu, A.C. Annual variation of activity and daily distances moved in adult Spur-thighed tortoises, Testudo graeca, in southwestern Spain. Herpetologica 1995, 51, 225–233. [Google Scholar]
- Cushman, S.; McKelvey, K.; Hayden, J.; Schwartz, M. Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The Am. Nat. 2006, 168, 486–499. [Google Scholar] [CrossRef]
- Arakelyan, M.; Türkozan, O.; Hezaveh, N.; Parham, J. Ecomorphology of tortoises (Testudo graeca complex) from the Araks River Valley. Russ. J. Herpetol. 2018, 25, 245–252. [Google Scholar] [CrossRef]
- Carretero, M.; Znari, M.; Harris, D.; Macé, J.C. Morphological divergence among populations of Testudo graeca from Westcentral Morocco. Anim. Biol. 2005, 55, 259–279. [Google Scholar] [CrossRef]
- Lagarde, F.; Louzizi, T.; Slimani, T.; EL Mouden, H.; BEN Kaddour, K.; Moulherat, S.; Bonnet, X. Bushes protect tortoises from lethal overheating in arid areas of Morocco. Environ. Conserv. 2012, 39, 172–182. [Google Scholar] [CrossRef]
- Bonnet, X.; Lagarde, F.; Henen, B.T.; Corbin, J.; Nagy, K.A.; Naulleau, G.; Balhoul, K.; Chastel, O.; Legrand, A.; Cambag, R. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 2001, 72, 357–372. [Google Scholar] [CrossRef]
- Reydon, T.A.C. Are Species Good Units for Biodiversity Studies and Conservation Efforts? In From Assessing to Conserving Biodiversity: History, Philosophy and Theory of the Life Sciences; Casetta, E., Marques da Silva, J., Vecchi, D., Eds.; Springer: Cham, UK, 2019; Volume 24, pp. 167–193. [Google Scholar]
Code | Locus Name | Sequence | Product Size (bp) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|---|
1 | Goag6-F | TAAGGGCTATGAGGAAGAAT | 369–399 | 53 | Edwards et al. (2003) [31] |
Goag6-R | GTAATGGTGTGGGTGGGA | ||||
2 | GmuB08-F | CTCTGAGACCCTTATTCACGTC | 236–262 | 58 | King and Julian (2004) [32] |
GmuB08-R | AGCCTTTGTCTGTAAGCTGTT C | ||||
3 | Gp61-F | GCATTAAACCATTGTGCCTCA | 218–236 | 60 | Schwartz et al. (2003) [33] |
Gp61-R | AGTGGTGGTCGAAGTGGAAC | ||||
4 | Test76-F | GAATTCTAACTTTTCTCTGTGGAGC | 123–145 | 58 | Forlani et al. (2005) [34] |
Test76-R | TCTTATTGCATATCTGAGTACAGAAG | ||||
5 | Gp81-F | TCACACAAACCCCATCCATA | 379–385 | 57 | Schwartz et al. (2003) [33] |
Gp81-R | TCCATTGAATTGCCATCTGA | ||||
6 | Test56-F | GATATGCAGGCAAACAGGCT | 170–234 | 56 | Forlani et al. (2005) [34] |
Test56-R | CAGGAATCTGTGCATGATTGA | ||||
7 | Test71-F | GATTGTGGTCACATATAGAGGAGG | 117–155 | 56 | Forlani et al. (2005) [34] |
Test71-R | TGTTGTACTTAGCTGTTCTGATCTATT | ||||
8 | GmuD51-F | GTTGGGCACTAGATAGATTCG | 134–220 | 58 | King and Julian (2004) [32] |
GmuD51-R | CATTCAAGTCAACGGAAAGAC | ||||
9 | TWS190-F | TTGTTCTGCCATCAGTCAGC | 94–110 | 62 | Perez et al. (2006) [35] |
TWS190-R | ATCCCCTTACCACCAACTCC | ||||
10 | TWI61-F | TATTTCAGGCGTGGAGCAAC | 247–335 | 62 | Perez et al. (2006) [35] |
TWI61-R | CAATGGGCTACTTGCCTACC |
Locus | Population | Na | Allele Size Range | Ne | PIC | I | Ho | He | uHe | FIS | FST | Corrected FST |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test76 | G1 | 3 | 131–145 | 1.22 | 0.17 | 0.37 | 0.04 | 0.177 | 0.18 | 0.79 | 0.78 | −0.02 |
G2 | 3 | 112–139 | 1.24 | 0.19 | 0.41 | 0.04 | 0.196 | 0.20 | 0.66 | 0.64 | ||
Gp61 | G1 | 3 | 218–236 | 2.16 | 0.43 | 0.83 | 0.96 | 0.536 | 0.55 | −0.79 | −0.79 | 0.00 |
G2 | 3 | 218–236 | 2.12 | 0.42 | 0.82 | 0.93 | 0.528 | 0.55 | −0.74 | −0.76 | ||
GmuB08 | G1 | 6 | 234–262 | 4.04 | 0.71 | 1.54 | 0.46 | 0.752 | 0.77 | 0.32 | 0.39 | 0.02 |
G2 | 10 | 234–262 | 7.26 | 0.85 | 2.12 | 0.71 | 0.862 | 0.89 | 0.13 | 0.17 | ||
Goag6 | G1 | 7 | 361–399 | 2.21 | 0.50 | 1.15 | 0.50 | 0.547 | 0.56 | 0.00 | 0.09 | 0.02 |
G2 | 8 | 373–397 | 3.77 | 0.71 | 1.68 | 0.71 | 0.735 | 0.76 | −0.06 | 0.03 | ||
Test71 | G1 | 6 | 117–155 | 1.58 | 0.35 | 0.84 | 0.35 | 0.37 | 0.37 | −0.11 | 0.06 | 0.38 |
G2 | 8 | 119–151 | 3.70 | 0.70 | 1.66 | 0.36 | 0.73 | 0.75 | 0.54 | 0.51 | ||
Test56 | G1 | 7 | 174–234 | 2.97 | 0.66 | 1.33 | 0.88 | 0.66 | 0.67 | −0.55 | −0.33 | 0.09 |
G2 | 12 | 170–232 | 6.88 | 0.85 | 2.19 | 0.71 | 0.85 | 0.88 | 0.00 | 0.16 | ||
Gp81 | G1 | 3 | 379–385 | 1.17 | 0.14 | 0.31 | 0.07 | 0.14 | 0.15 | 0.74 | 0.73 | 0.00 |
G2 | 3 | 379–385 | 1.57 | 0.31 | 0.62 | 0.28 | 0.35 | 0.36 | 0.22 | 0.18 | ||
TWS190 | G1 | 3 | 94–110 | 2.06 | 0.40 | 0.77 | 0.77 | 0.51 | 0.52 | −0.48 | −0.49 | 0.01 |
G2 | 4 | 94–110 | 2.20 | 0.48 | 0.94 | 0.64 | 0.54 | 0.56 | −0.15 | −0.18 | ||
GmuD51 | G1 | 11 | 136–220 | 3.93 | 0.77 | 1.77 | 0.65 | 0.75 | 0.76 | 0.14 | 0.12 | 0.01 |
G2 | 10 | 134–202 | 2.58 | 0.61 | 1.51 | 0.50 | 0.61 | 0.64 | 0.22 | 0.18 | ||
TWI61 | G1 | 3 | 303–335 | 2.16 | 0.43 | 0.83 | 0.96 | 0.54 | 0.55 | −0.79 | −0.79 | 0.00 |
G2 | 5 | 247–335 | 2.65 | 0.55 | 1.15 | 0.96 | 0.62 | 0.65 | −0.58 | −0.61 |
No. Population (K) | Mean LnP(K) | Stdev LnP(K) | Ln’(K) | |Ln’’(K)| | ΔK |
---|---|---|---|---|---|
1 | −956.5 | 0.55 | - | - | - |
2 | −990.2 | 10.4 | −33/72 | 149.8 | 14.7 |
3 | −1173.7 | 43.7 | −183.5 | 40.5 | 0.92 |
4 | −1316.6 | 154.7 | −142.9 | 259.8 | 1.6 |
5 | −1199.7 | 107.2 | 116.7 | - | - |
Sample | Geographic Origin | Structure Cluster (G1/G2). No Prior Population Information, K = 2 | Geneclass Migrant Probability Using L_Home/L_Max (*) L_Home (**), and Both Methods (***) |
---|---|---|---|
6 | Irano-Turanian Eco-region | 0.5424, 0.4576 | 0.0017 *** |
28 | Irano-Turanian Eco-region | 0.7119, 0.2881 | 0.0083 * |
31 | Irano-Turanian Eco-region | 0.3475, 0.6525 | 0.0040 *** |
36 | Irano-Turanian Eco-region | 0.5103, 0.4897 | 0.0476 * |
13 | Zagros Eco-region | 0.7247, 0.2753 | 0.0462 * |
14 | Zagros Eco-region | 0.4654, 0.5346 | 0.0136 * |
19 | Zagros Eco-region | 0.6045, 0.3955 | 0.0061 * |
22 | Zagros Eco-region | 0.6255, 0.3745 | 0.0218 * |
27 | Irano-Turanian Eco-region | 0.4862, 0.5138 | 0.0143 ** |
39 | Zagros Eco-region | 0.1567, 0.8433 | 0.0000 ** |
T. g. Buxtoni | T. g. Zarudnyi | |||
---|---|---|---|---|
Model | TSS | AUC | TSS | AUC |
GLM | 0.70 | 0.68 | 0.67 | 0.70 |
MaxEnt | 0.71 | 0.85 | 0.81 | 0.92 |
GBM | 0.91 | 0.98 | 0.89 | 0.97 |
GAM | 0.90 | 0.95 | 0.93 | 0.96 |
RF | 0.99 | 0.99 | 0.99 | 0.99 |
MARS | 0.70 | 0.76 | 0.77 | 0.95 |
Variable | Variable Importance | |
---|---|---|
Western Clade | Eastern Clade | |
Clay content | 30.1 | 38.2 |
Soil coarse fragments | 20.6 | 5.2 |
Altitude | 18.9 | 6.1 |
Slope | 2.8 | 19.3 |
bio15 | 6.1 | 16.8 |
bio7 | 2.7 | 2 |
NDVI | 9.3 | 4 |
Distance from shrublands | 4.5 | 3.8 |
Solar radiation | 3.5 | 1.8 |
Bulk density | 1.4 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjbar, N.; Malekian, M.; Ashrafzadeh, M.R.; Kusza, S.; Hemami, M.-R. The Role of Ecological Niche Divergence in Shaping Hybridization Patterns in Testudo graeca. Diversity 2025, 17, 653. https://doi.org/10.3390/d17090653
Ranjbar N, Malekian M, Ashrafzadeh MR, Kusza S, Hemami M-R. The Role of Ecological Niche Divergence in Shaping Hybridization Patterns in Testudo graeca. Diversity. 2025; 17(9):653. https://doi.org/10.3390/d17090653
Chicago/Turabian StyleRanjbar, Neda, Mansoureh Malekian, Mohammad Reza Ashrafzadeh, Szilvia Kusza, and Mahmoud-Reza Hemami. 2025. "The Role of Ecological Niche Divergence in Shaping Hybridization Patterns in Testudo graeca" Diversity 17, no. 9: 653. https://doi.org/10.3390/d17090653
APA StyleRanjbar, N., Malekian, M., Ashrafzadeh, M. R., Kusza, S., & Hemami, M.-R. (2025). The Role of Ecological Niche Divergence in Shaping Hybridization Patterns in Testudo graeca. Diversity, 17(9), 653. https://doi.org/10.3390/d17090653