Investigation of Insect Diversity in the Restoration Area of Yimin Surface Mine in Inner Mongolia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Design of Experiments
2.3. Sample Collection
2.4. Statistical Analyses
3. Results
3.1. The Changes in Insect Assemblage Structure with the Increase in Restoration Years
3.2. The Change in Insect Diversity with the Increase in Restoration Years
4. Discussion
4.1. Restoration Years and Insect Assemblage Structure
4.2. The Effects of Ecological Restoration Years and Seasons on the Diversity of Insect Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ge, T.; Hao, X.; Li, J. Effects of Public Participation on Environmental Governance in China: A Spatial Durbin Econometric Analysis. J. Clean. Prod. 2021, 321, 129042. [Google Scholar] [CrossRef]
- Aung, T.S.; Fischer, T.B.; Shengji, L. Evaluating Environmental Impact Assessment (EIA) in the Countries along the Belt and Road Initiatives: System Effectiveness and the Compatibility with the Chinese EIA. Environ. Impact Assess. Rev. 2020, 81, 106361. [Google Scholar] [CrossRef]
- Le Gouill, C.; Poupeau, F. A Framework to Assess Mining within Social-Ecological Systems. Curr. Opin. Environ. Sustain. 2020, 44, 67–73. [Google Scholar] [CrossRef]
- Yang, F.; Geng, X.; Wang, R.; Zhang, Z.; Guo, X. A Synthesis of Mineralization Styles and Geodynamic Settings of the Paleozoic and Mesozoic Metallic Ore Deposits in the Altay Mountains, NW China. J. Asian Earth Sci. 2018, 159, 233–258. [Google Scholar] [CrossRef]
- Aili, A.; Zhang, Y.; Lin, T.; Xu, H.; Waheed, A.; Zhao, W.; Kuerban, A.; Liu, K.; Dou, H. Optimizing Vegetation Restoration: A Comprehensive Index System for Reclaiming Abandoned Mining Areas in Arid Regions of China. Biology 2025, 14, 23. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing Terrestrial Vegetation Activity of Ecological Restoration Program in the Beijing–Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Ye, Y.; Xu, X.; Li, Y.; Han, W. Effects of thermal treatment on properties and ecological functions of contaminated soil. Hjgcjsxb 2021, 11, 371–377. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Zhao, H.; Zhang, M.; Liu, S.; Zeng, Y. Discussion on the nine aspects of addressing environmental problems of mining. Mtxb 2019, 44, 10–22. [Google Scholar] [CrossRef]
- Shouhe, C.A.O.; Shuzhao, C.; Tao, S.; Meng, Y. Comprehensive utilization model of oil storage and energy storage of abandoned open-pit. Zgky 2021, 30, 89–94. [Google Scholar] [CrossRef]
- Esterhuizen, G.S.; Gï¿ ½rtunca, R.G. Coal Mine Safety Achievements in the USA and the Contribution of NIOSH Research. J. South. Afr. Inst. Min. Metall. 2006, 106, 813–820. [Google Scholar]
- Song, J.; Choi, Y. Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea. Energies 2016, 9, 102. [Google Scholar] [CrossRef]
- Clewell, A.; Aronson, J.; Winterhalder, K. The SER International Primer on Ecological Restoration; Society for Ecological Restoration International: Tucson, Arizona, 2004. [Google Scholar]
- Ruiz-Jaen, M.C.; Mitchell Aide, T. Restoration Success: How Is It Being Measured? Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Ruiz-Jaén, M.C.; Aide, T.M. Vegetation Structure, Species Diversity, and Ecosystem Processes as Measures of Restoration Success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar] [CrossRef]
- Jiang, G.F.; Yan, Z.G.; Cen, M. Insect community and its diversity in Mangrove forest at Yingluo Bay of Guangx. Chin. J. Appl. Ecol. 2000, 11, 95–98. (In Chinese) [Google Scholar] [CrossRef]
- Zou, Y. The Health Evaluation of Grassland Ecosystem in Xilin Hot Open Pit Mining Area. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Liu, T. Health Assessment of Alpine Grassland Ecosystem in Northwest Sichuan—A Case Study in Anqu Township. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, 2016. (In Chinese). [Google Scholar]
- Hou, H.Y.; Yun, X.J.; Zhou, J.W.; Liu, H.J.; Li, Y.H.; Guo, Y.J.; Zhang, Y.Z.; Liu, X.J.; Gao, S.B. Assessing Restoration Effectiveness: A Comparative Analysis of Ecological Restoration Methods in Temperate Degraded Grassland of Inner Mongolia. Chin. J. Grassl. 2025, 47, 39–47. [Google Scholar] [CrossRef]
- Watts, C.H.; Didham, R.K. Rapid Recovery of an Insect–Plant Interaction Following Habitat Loss and Experimental Wetland Restoration. Oecologia 2006, 148, 61–69. [Google Scholar] [CrossRef]
- Shuey, J.A. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes. Insects 2013, 4, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; Black, S.H.; Elphick, C.S.; Grames, E.M.; Halsch, C.A.; Schultz, C.B.; Wagner, D.L. Missing the Bigger Picture: Why Insect Monitoring Programs Are Limited in Their Ability to Document the Effects of Habitat Loss. Conserv. Lett. 2023, 16, e12951. [Google Scholar] [CrossRef]
- Basima, L.B.; Cisirika, B.M.; Muhigwa, J.-B.B. Animal Recolonization as a Success Indicator of the Progressive Ecological Rehabilitation around a Tropical Highland Open Pit Mine. J. Environ. Prot. 2025, 16, 87–110. [Google Scholar] [CrossRef]
- Wilson, R.J.; Fox, R. Insect Responses to Global Change Offer Signposts for Biodiversity and Conservation. Ecol. Entomol. 2021, 46, 699–717. [Google Scholar] [CrossRef]
- Bried, J.; Tear, T.; Shirer, R.; Zimmerman, C.; Gifford, N.; Campbell, S.; O’Brien, K. A Framework to Integrate Habitat Monitoring and Restoration with Endangered Insect Recovery. Environ. Manag. 2014, 54, 1385–1398. [Google Scholar] [CrossRef]
- Köthe, S.; Schneider, F.D.; Bakanov, N.; Brühl, C.A.; Eichler, L.; Fickel, T.; Gemeinholzer, B.; Hörren, T.; Lux, A.; Meinel, G.; et al. Improving Insect Conservation Management through Insect Monitoring and Stakeholder Involvement. Biodivers. Conserv. 2023, 32, 691–713. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Ssymank, A.; Sorg, M.; de Kroon, H.; Jongejans, E. Insect Biomass Decline Scaled to Species Diversity: General Patterns Derived from a Hoverfly Community. Proc. Natl. Acad. Sci. USA 2021, 118, e2002554117. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Schmid, B.; Obrist, M.K.; Schüpbach, B.; Kleijn, D.; Duelli, P. Effects of Ecological Compensation Meadows on Arthropod Diversity in Adjacent Intensively Managed Grassland. Biol. Conserv. 2010, 143, 642–649. [Google Scholar] [CrossRef]
- Audino, L.D.; Louzada, J.; Comita, L. Dung Beetles as Indicators of Tropical Forest Restoration Success: Is It Possible to Recover Species and Functional Diversity? Biol. Conserv. 2014, 169, 248–257. [Google Scholar] [CrossRef]
- Cao, Z.Y.; Zhang, H.X.; Xiong, C.Y.; Cui, Y.F.; Wang, Y.; Shi, C.; Ban, L.P.; Zhang, R.; Wei, S.H. Effects of different types of steppe fencings on insect diversity. J. Plant Prot. 2024, 51, 1189–1202. [Google Scholar] [CrossRef]
- Institute of Zoology, Chinese Academy of Sciences. Fauna Sinica; Science Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Cai, W.; Li, H. Illustrated Handbook of Insects in China; Shanxi Science and Technology Press: Taiyuan, China, 2015. (In Chinese) [Google Scholar]
- Nengnaizhabu. Inner Mongolia Insect Fauna, Book 1; Inner Mongolia People’s Publishing House: Hohhot, China, 1986; Volume I. (In Chinese) [Google Scholar]
- Bai, X.; Liu, A. Catalogue of Grassland Pests in Inner Mongolia; Inner Mongolia University Press: Hohhot, China, 2015. (In Chinese) [Google Scholar]
- Editorial Committee of Fauna Sinica, Chinese Academy of Sciences. Economic Insect Fauna of China; Science Press: Beijing, China, 1959–1997. (In Chinese) [Google Scholar]
- Zheng, L.; Gui, H. Insect Classification; Nanjing Normal University Press: Nanjing, China, 1999. (In Chinese) [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Zhang, H.G.; Bu, W.J. Applications of the ape package in zoological systematics and evolution. Bio-Protoc. J. 2021, Bio-101, e1010674. (In Chinese) [Google Scholar]
- Anderson, M.L. Permutational Multivariate Analysis of Variance (PERMANOVA); Wiley StatsRef: Hoboken, NJ, USA, 2017; Statistics Reference Online; pp. 1–15. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Summerville, K.S.; Bonte, A.C.; Fox, L.C. Short-Term Temporal Effects on Community Structure of Lepidoptera in Restored and Remnant Tallgrass Prairies. Restor. Ecol. 2007, 15, 179–188. [Google Scholar] [CrossRef]
- Luong, J.C.; Turner, P.L.; Phillipson, C.N.; Seltmann, K.C. Local Grassland Restoration Affects Insect Communities. Ecol. Entomol. 2019, 44, 471–479. [Google Scholar] [CrossRef]
- Grunzweig, L.; Spiering, D.J.; Labatore, A.; Warren, R.J. Non-Native Plant Invader Renders Suitable Habitat Unsuitable. Arthropod-Plant Interact. 2015, 9, 577–583. [Google Scholar] [CrossRef]
- Lane, C.P.; Andow, D.A. Oak Savanna Subhabitat Variation and the Population Biology of Lycaeides Melissa Samuelis (Lepidoptera: Lycaenidae). Entomol. Soc. Am. 2003, 96, 799–809. [Google Scholar]
- Geva, N.; Guershon, M.; Orlova, M.; Ayali, A. Memoirs of a Locust: Density-Dependent Behavioral Change as a Model for Learning and Memory. Neurobiol. Learn. Mem. 2010, 93, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Renault, D.; Laparie, M.; McCauley, S.J.; Bonte, D. Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions. Annu. Rev. Entomol. 2018, 63, 345–368. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Liu, G.; Zhang, S.; Ta, F.; Han, G.; Tang, K.; Wang, N. Grassland Insect Diversity and Its Influencing Factors in Central Inner Mongolia. Chin. J. Grassl. 2024, 46, 124–132. [Google Scholar] [CrossRef]
- Li, W.; Gao, Y.; Cui, J.; Shi, S.-S. Effects of Temperature on the Development and Fecundity of Atractomorpha Sinensis (Orthoptera: Pyrgomorphidae). J. Econ. Ѐntomol. 2020, 113, 2530–2539. [Google Scholar] [CrossRef]
- Wootton, R. Dragonfly Flight: Morphology, Performance and Behaviour. Int. J. Odonatol. 2020, 23, 31–39. [Google Scholar] [CrossRef]
- Wootton, R.J. The Functional Morphology of the Wings of Odonata. Adv. Odonatol. 1991, 5, 153–169. [Google Scholar]
- Carpenter, J.M. Towards Simultaneous Analysis of Morphological and Molecular Data in Hymenoptera. Zool. Scr. 1999, 28, 251–260. [Google Scholar] [CrossRef]
- Branduzzi, A.M. Enhancing Native Plant Diversity on Legacy Minelands. Theses and Dissertations—Forestry and Natural Resources. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2020. [Google Scholar] [CrossRef]
- Joern, A.; Provin, T.; Behmer, S.T. Not Just the Usual Suspects: Insect Herbivore Populations and Communities Are Associated with Multiple Plant Nutrients. Ecology 2012, 93, 1002–1015. [Google Scholar] [CrossRef]
- He, D.H.; Chang, Y.D.; Tian, Z.; Yang, Y.; Yang, S.; Yang, Y.; Li, Y.; Ma, S. Dynamics in composition, trophic structure and diversity of an insect community during the processes of succession and restoration. Acta Ecol. Sin. 2001, 1, 117–125. (In Chinese) [Google Scholar]
- Sollai, G.; Solari, P. An Overview of “Insect Biodiversity”. Diversity 2022, 14, 134. [Google Scholar] [CrossRef]
- Li, Y.; Ji, L.; Bai, X. Survey and Diversity Assessment of Key Insect Communities in Different Grassland Types in Inner Mongolia. Sci. Rep. 2025, 15, 22307. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; Pelton, E.M.; Black, S.H. Declines in Insect Abundance and Diversity: We Know Enough to Act Now. Conserv. Sci. Pract. 2019, 1, e80. [Google Scholar] [CrossRef]
- Quan, H.; Tu, K.; Shu, P.; Chen, L.; Zhang, C.; Ding, Y.; Zou, Z. Community structure and faunal analysis of Coleoptera and Lepidoptera insects in Jiulingshan, Jiangxi. J. Nanchang Univ. 2025, 49, 172–183. (In Chinese) [Google Scholar] [CrossRef]
- Lennartsson, T.; Wissman, J.; Bergström, H.-M. The Effect of Timing of Grassland Management on Plant Reproduction. Int. J. Ecol. 2012, 2012, 156274. [Google Scholar] [CrossRef]
- Papadopoulos, A.G.; Koskinioti, P.; Zarpas, K.D.; Papadopoulos, N.T. Differential Cold Tolerance on Immature Stages of Geographically Divergent Ceratitis Capitata Populations. Biology 2023, 12, 1379. [Google Scholar] [CrossRef]
- Danks, H.V. Long Life Cycles in Insects. Can. Entomol. 1992, 124, 167–187. [Google Scholar] [CrossRef]
- Ricotta, C.; Podani, J. On Some Properties of the Bray-Curtis Dissimilarity and Their Ecological Meaning. Ecol. Complex. 2017, 31, 201–205. [Google Scholar] [CrossRef]
- Legendre, P. Interpreting the Replacement and Richness Difference Components of Beta Diversity. Glob. Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
Sampling Year | Restoration Time/Year | Group Number (S) |
---|---|---|
2018 | 1 | 25 |
2021 | 4 | 39 |
2024 | 7 | 55 |
Sampling Year | Sample Collection Month | Item | Hemiptera | Lepidoptera | Neuroptera | Hymenoptera | Coleoptera | Odonata | Diptera | Orthoptera | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | June | Number of families | 2 | 2 | 0 | 2 | 2 | 1 | 2 | 1 | 12 |
Number of species | 5 | 4 | 0 | 2 | 3 | 1 | 2 | 1 | 18 | ||
Abundance | 6 | 5 | 0 | 6 | 4 | 1 | 2 | 1 | 25 | ||
2018 | September | Number of families | 2 | 3 | 1 | 2 | 2 | 2 | 4 | 1 | 17 |
Number of species | 3 | 5 | 1 | 2 | 3 | 2 | 4 | 2 | 22 | ||
Abundance | 15 | 16 | 6 | 3 | 5 | 4 | 10 | 94 | 153 | ||
2021 | June | Number of families | 5 | 2 | 1 | 4 | 2 | 2 | 5 | 3 | 24 |
Number of species | 5 | 4 | 1 | 4 | 2 | 2 | 5 | 3 | 26 | ||
Abundance | 13 | 6 | 2 | 4 | 2 | 3 | 9 | 5 | 44 | ||
2021 | September | Number of families | 5 | 3 | 1 | 4 | 2 | 2 | 7 | 2 | 26 |
Number of species | 7 | 3 | 1 | 4 | 3 | 2 | 7 | 4 | 31 | ||
Abundance | 70 | 10 | 2 | 21 | 72 | 3 | 88 | 96 | 362 | ||
2024 | June | Number of families | 5 | 1 | 1 | 5 | 2 | 1 | 5 | 2 | 22 |
Number of species | 7 | 2 | 1 | 6 | 3 | 1 | 5 | 2 | 27 | ||
Abundance | 15 | 9 | 3 | 13 | 5 | 1 | 13 | 6 | 65 | ||
2024 | September | Number of families | 8 | 2 | 0 | 3 | 2 | 1 | 7 | 5 | 28 |
Number of species | 16 | 4 | 0 | 3 | 4 | 1 | 12 | 6 | 46 | ||
Abundance | 252 | 32 | 0 | 90 | 75 | 1 | 119 | 64 | 633 |
Pairs | R2 | p.Value | p.Adjusted |
---|---|---|---|
2018 vs. 2021 | 0.272 | 0.011 * | 0.020 * |
2018 vs. 2024 | 0.397 | 0.006 ** | 0.016 * |
2021 vs. 2024 | 0.362 | 0.008 ** | 0.017 * |
Species | 2018 vs. 2021 | 2018 vs. 2024 | 2021 vs. 2024 |
---|---|---|---|
Tetrix japonica | 0.1925(14.81%) | 0.1978(12.36%) | 0.1867(12.04%) |
Oedaleus decorus | 0.1683(27.42%) | 0.1754(23.02%) | 0.1643(22.23%) |
Adelphocoris quadripunctatus | 0.1457(38.54%) | 0.1539(32.59%) | 0.1428(31.29%) |
Coccinula sinensis | 0.1279(47.98%) | 0.1362(41.00%) | 0.1285(39.66%) |
Anastoechus neimongolanus | 0.1102(56.37%) | 0.1205(48.53%) | 0.1149(47.19%) |
Bombus patagiatus | 0.0968(64.02%) | - | - |
Voria ruralis | 0.0621(68.80%) | - | - |
Deraeocoris ater | - | - | - |
Harmonia axyridis | - | - | 0.1015(53.73%) |
Pontia edusa | - | 0.1069(55.25%) | 0.0912(59.56%) |
Oecleopsis sp. | - | 0.0943(61.17%) | 0.0828(65.00%) |
Pimpla disparis | - | 0.0802(66.18%) | 0.0755(69.84%) |
Pairs | R2 | p.Value | p.Adjusted |
---|---|---|---|
2018 vs. 2021 | 0.295 | 0.023 * | 0.028 * |
2018 vs. 2024 | 0.384 | 0.003 ** | 0.012 * |
2021 vs. 2024 | 0.331 | 0.001 *** | 0.001 *** |
Pairs | R2 | p.Value | p.Adjusted |
---|---|---|---|
2018 vs. 2021 | 0.251 | 0.078 | 0.088 |
2018 vs. 2024 | 0.320 | 0.061 | 0.072 |
2021 vs. 2024 | 0.357 | 0.091 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, Y.; Shi, R.; Li, X.; Yan, H.; Bai, X.; Gao, S. Investigation of Insect Diversity in the Restoration Area of Yimin Surface Mine in Inner Mongolia. Diversity 2025, 17, 635. https://doi.org/10.3390/d17090635
Zhang Y, Yang Y, Shi R, Li X, Yan H, Bai X, Gao S. Investigation of Insect Diversity in the Restoration Area of Yimin Surface Mine in Inner Mongolia. Diversity. 2025; 17(9):635. https://doi.org/10.3390/d17090635
Chicago/Turabian StyleZhang, Yuzhen, Yawen Yang, Rui Shi, Xintian Li, Haoran Yan, Xue Bai, and Shaobo Gao. 2025. "Investigation of Insect Diversity in the Restoration Area of Yimin Surface Mine in Inner Mongolia" Diversity 17, no. 9: 635. https://doi.org/10.3390/d17090635
APA StyleZhang, Y., Yang, Y., Shi, R., Li, X., Yan, H., Bai, X., & Gao, S. (2025). Investigation of Insect Diversity in the Restoration Area of Yimin Surface Mine in Inner Mongolia. Diversity, 17(9), 635. https://doi.org/10.3390/d17090635