Effect of Cover Cropping on the Abundance, Community Composition and Functional Diversity of Ground-Dwelling Arthropods in a Mediterranean Olive Grove
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Establishment of Cover Crops
2.3. Sampling Protocol
2.4. Arthropod Identification
2.5. Dominance, Frequency, Species Richness and Diversity
2.6. Species Traits and Functional Diversity
2.7. Data Analysis
3. Results
3.1. Abundance and Community Composition of Ground-Dwelling Arthropods
3.2. Abundance, Temporal Distribution and Functional Diversity of Spiders
3.3. Abundance, Temporal Distribution and Functional Diversity of Carabidae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Class | Order | Family | Feeding Habits | Control | Fescue | Clover |
---|---|---|---|---|---|---|
Arachnida | Araneae | Predators | 920 | 1237 | 1044 | |
Opiliones | Predators | 80 | 215 | 163 | ||
Pseudoscorpiones | Predators | 20 | 70 | 22 | ||
Chilopoda | Scolopendromorpha | Scolopendridae | Predators | 18 | 19 | 20 |
Scutigeromorpha | Scutigeridae | Predators | 1 | 10 | 6 | |
Diplopoda | Saprophagous | 40 | 22 | 14 | ||
Malacostraca | Isopoda | Saprophagous | 737 | 2286 | 3330 | |
Entognatha | Collembola | Saprophagous | 184 | 1339 | 1217 | |
Insecta | Archaeognatha | Saprophagous | 1 | 1 | 1 | |
Zygentoma | Saprophagous | 0 | 1 | 3 | ||
Blattodea | Omnivores | 1325 | 511 | 570 | ||
Coleoptera | Anthicidae | Omnivores | 687 | 1770 | 1501 | |
Cantharidae | Omnivores | 1 | 332 | 60 | ||
Carabidae | Predators | 347 | 411 | 266 | ||
Chrysomelidae | Herbivores | 6 | 11 | 6 | ||
Coccinellidae | Predators | 4 | 10 | 16 | ||
Curculionidae | Herbivores | 20 | 28 | 32 | ||
Dermestidae | Saprophagous | 28 | 2 | 1 | ||
Elateridae | Herbivores | 9 | 23 | 25 | ||
Geotrupidae | Saprophagous | 1 | 0 | 0 | ||
Histeridae | Saprophagous | 1 | 5 | 2 | ||
Hydraenidae | Saprophagous | 0 | 1 | 0 | ||
Laemophloidae | Saprophagous | 1 | 0 | 0 | ||
Latridiidae | Saprophagous | 16 | 107 | 88 | ||
Leiodidae | Saprophagous | 27 | 3 | 1 | ||
Melyridae | Omnivores | 2504 | 370 | 577 | ||
Mordellidae | Herbivores | 32 | 2 | 3 | ||
Nitidulidae | Saprophagous | 0 | 4 | 0 | ||
Ptinidae | Saprophagous | 86 | 8 | 11 | ||
Scarabaeidae | Herbivores | 12 | 25 | 33 | ||
Silphidae | Saprophagous | 0 | 2 | 1 | ||
Staphylinidae | Predators | 53 | 80 | 71 | ||
Sylvanidae | Herbivores | 794 | 174 | 231 | ||
Tenebrionidae | Herbivores | 9 | 50 | 119 | ||
Dermaptera | Omnivores | 101 | 2 | 3 | ||
Embidiina | Saprophagous | 9 | 3 | 5 | ||
Mantodea | Predators | 1 | 0 | 1 | ||
Neuroptera | Chrysopidae | Predators | 12 | 3 | 0 | |
Myrmeleontidae | Predators | 1 | 0 | 0 | ||
Hemiptera | Anthocoridae | Predators | 0 | 1 | 1 | |
Reduviidae | Predators | 2 | 10 | 13 | ||
Hymenoptera | Formicidae | Omnivores | 2699 | 3223 | 6468 | |
Orthoptera | Acrididae | Herbivores | 5 | 42 | 14 | |
Gryllidae | Herbivores | 37 | 19 | 45 |
Control | Fescue | Clover | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | Species | Size | Hunting Strategy | n | D | C | n | D | C | n | D | C |
Agelenidae | Hellamalthonica irini Bosmans | S | Web | 77 | 16.1 | 27.5 | 10 | 1.9 | 6.9 | - | - | - |
Dysderidae | Dysdera spinicrus Simon | M | Spec | 47 | 9.8 | 40.6 | 7 | 1.3 | 8.3 | 7 | 1.7 | 9.7 |
Harpactea coccifera Brignoli | VS | Spec | 3 | 0.6 | 4.3 | - | - | - | - | - | - | |
Harpactea sp. | VS | Spec | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | - | - | - | |
Gnaphosidae | Civizelotes caucasius Koch | S | Act | 4 | 0.8 | 5.8 | 22 | 4.2 | 22.2 | 9 | 2.2 | 9.7 |
Civizelotes solstitialis Levy | S | Act | 5 | 1.0 | 7.2 | 16 | 3.0 | 16.7 | 18 | 4.4 | 13.9 | |
Drassodes lutescens Koch | M | Act | - | - | - | - | - | - | 1 | 0.2 | 1.4 | |
Drassyllus praeficus Koch | S | Act | 6 | 1.3 | 5.8 | 26 | 4.9 | 16.7 | 24 | 5.8 | 16.7 | |
Drassodes serratichelis Roewer | VS | Act | 1 | 0.2 | 1.4 | - | - | - | 1 | 0.2 | 1.4 | |
Haplodrassus dalmatensis Koch | S | Act | - | - | - | 4 | 0.8 | 4.2 | 1 | 0.2 | 1.4 | |
Leptodrassus albidus Simon | VS | Act | - | - | - | 23 | 4.4 | 15.3 | 23 | 5.6 | 19.4 | |
Marinarozelotes adriaticus Caporiacco | S | Act | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | 3 | 0.7 | 4.2 | |
Marinarozelotes barbatus Koch | S | Act | 1 | 0.2 | 1.4 | - | - | - | 1 | 0.2 | 1.4 | |
Marinarozelotes malkini Platnick & Murphy | S | Act | 7 | 1.5 | 8.7 | 16 | 3.0 | 13.9 | 16 | 3.9 | 12.5 | |
Nomisia ripariensis Pickard-Cambridge | S | Act | - | - | - | 2 | 0.4 | 2.8 | 5 | 1.2 | 5.6 | |
Pterotricha lentiginosa Koch | M | Act | 5 | 1.0 | 7.2 | 7 | 1.3 | 8.3 | 25 | 6.1 | 25.0 | |
Synaphosus trichopus Roewer | VS | Act | - | - | - | 3 | 0.6 | 4.2 | 1 | 0.2 | 1.4 | |
Zelotes chaniaensis Senglet | S | Act | 8 | 1.7 | 8.7 | 10 | 1.9 | 13.9 | 1 | 0.2 | 1.4 | |
Zelotes metellus Roewer | S | Act | - | - | - | 1 | 0.2 | 1.4 | 5 | 1.2 | 6.9 | |
Zelotes minous Chatzaki | VS | Act | 21 | 4.4 | 14.5 | 23 | 4.4 | 12.5 | 7 | 1.7 | 8.3 | |
Zelotes prishutovae Ponomarev & Tsvetkov | VS | Act | - | - | - | 7 | 1.3 | 8.3 | 2 | 0.5 | 2.8 | |
Zelotes subterraneus Koch | S | Act | - | - | - | 3 | 0.6 | 4.2 | 2 | 0.5 | 2.8 | |
Zelotes tenuis Koch | S | Act | 8 | 1.7 | 8.7 | 1 | 0.2 | 1.4 | - | - | - | |
Linyphiidae | Agyneta pseudorurestris Wunderlich | VS | Web | - | - | - | 9 | 1.7 | 11.1 | 17 | 4.1 | 13.9 |
Diplocephalus graecus Pickard-Cambridge | VS | Web | 2 | 0.4 | 2.9 | 24 | 4.6 | 18.1 | 38 | 9.2 | 16.7 | |
Palliduphantes malickyi Wunderlich | VS | Web | 33 | 6.9 | 20.3 | 11 | 2.1 | 8.3 | 12 | 2.9 | 8.3 | |
Trichoncoides piscator Simon | VS | Web | 1 | 0.2 | 1.4 | 7 | 1.3 | 9.7 | 4 | 1.0 | 2.8 | |
Tenuiphantes tenuis Blackwall | VS | Web | 3 | 0.6 | 1.4 | - | - | - | - | - | - | |
Linyphiidae sp. | VS | Web | - | - | - | 2 | 0.4 | 1.4 | - | - | - | |
Lycosidae | Alopecosa albofasciata Brullé | M | Act | 58 | 12.1 | 13.0 | 24 | 4.6 | 19.4 | 33 | 8.0 | 16.7 |
Hogna radiata Latreille | L | Act | 2 | 0.4 | 2.9 | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | |
Oonopidae | Orchestina setosa Dalmas | VS | Act | - | - | - | 2 | 0.4 | 2.8 | 3 | 0.7 | 4.2 |
Silhouettella loricatula Roewer | VS | Act | 2 | 0.4 | 2.9 | 5 | 0.9 | 6.9 | 6 | 1.5 | 6.9 | |
Palpimanidae | Paplimanus gibbulus Dufour | S | Act | 26 | 5.4 | 29.0 | 40 | 7.6 | 31.9 | 18 | 4.4 | 19.4 |
Philodromidae | Thantaus atratus Simon | S | Act | - | - | - | - | - | - | 3 | 0.7 | 4.2 |
Tibellus macellus Simon | M | Act | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | 2 | 0.5 | 2.8 | |
Pulchellodromus pulchellus Lucas | VS | Act | - | - | - | - | - | - | 2 | 0.5 | 1.4 | |
Pisauridae | Pisaura mirabilis Clerck | L | Act | - | - | - | 1 | 0.2 | 1.4 | - | - | - |
Salticidae | Cyrba algerina Lucas | VS | Act | - | - | - | - | - | - | 4 | 1.0 | 4.2 |
Chalcoscirtus infimus Simon | VS | Act | 1 | 0.2 | 1.4 | 3 | 0.6 | 4.2 | 4 | 1.0 | 5.6 | |
Euophrys herbigrada Simon | VS | Act | 5 | 1.0 | 7.2 | 4 | 0.8 | 5.6 | 14 | 3.4 | 16.7 | |
Evarcha jucunda Lucas | S | Act | 1 | 0.2 | 1.4 | - | - | - | - | - | - | |
Heliophanus cupreus Walckenaer | S | Act | - | - | - | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | |
Habrocestum egaeum Metzner | S | Act | 9 | 1.9 | 10.1 | 1 | 0.2 | 1.4 | 0 | 0.0 | 0.0 | |
Heliophanus equester Koch | S | Act | - | - | - | 16 | 3.0 | 15.3 | 3 | 0.7 | 4.2 | |
Philaeus chrysops Poda | S | Act | - | - | - | - | - | - | 1 | 0.2 | 1.4 | |
Phlegra fasciata Hahn | S | Act | 1 | 0.2 | 1.4 | - | - | - | 2 | 0.5 | 2.8 | |
Pellenes geniculatus Simon | VS | Act | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | 2 | 0.5 | 2.8 | |
Synageles dalmaticus Keyserling | VS | Act | 8 | 1.7 | 10.1 | 1 | 0.2 | 1.4 | 4 | 1.0 | 5.6 | |
Salticus zebraneus Koch | VS | Act | 1 | 0.2 | 1.4 | - | - | - | - | - | - | |
Scytodidae | Scytodes thoracica Latreille | S | Act | 13 | 2.7 | 14.5 | 3 | 0.6 | 4.2 | 4 | 1.0 | 5.6 |
Sicariidae | Loxosceles rufescens Dufour | S | Act | - | - | - | 1 | 0.2 | 1.4 | - | - | - |
Theridiidae | Euryopis episinoides Walckenaer | VS | Web | 15 | 3.1 | 20.3 | 7 | 1.3 | 8.3 | 5 | 1.2 | 6.9 |
Kochiura aulica Koch | VS | Web | 1 | 0.2 | 1.4 | - | - | - | - | - | - | |
Theridion cinereum Thorell | VS | Web | - | - | - | - | - | - | 1 | 0.2 | 1.4 | |
Theridiidae sp. | VS | Web | 4 | 0.8 | 4.3 | - | - | - | - | - | - | |
Enoplognatha sp. | VS | Web | - | - | - | - | - | - | 1 | 0.2 | 1.4 | |
Thomisidae | Bassaniodes bufo Dufour | M | Amb | - | - | - | 1 | 0.2 | 1.4 | - | - | - |
Monaeses paradoxus Lucas | M | Amb | 2 | 0.4 | 2.9 | 1 | 0.2 | 1.4 | 1 | 0.2 | 1.4 | |
Ozyptila confluens Koch | S | Amb | 3 | 0.6 | 2.9 | - | - | - | 1 | 0.2 | 1.4 | |
Ozyptila sanctuaria Pickard-Cambridge | VS | Amb | 3 | 0.6 | 4.3 | 17 | 3.2 | 15.3 | 8 | 1.9 | 9.7 | |
Synema globosum Fabricius | S | Amb | - | - | - | 1 | 0.2 | 1.4 | - | - | - | |
Xysticus acerbus Thorell | S | Amb | - | - | - | - | - | - | 1 | 0.2 | 1.4 | |
Titanoecidae | Nurscia albomaculata Lucas | M | Web | - | - | - | 6 | 1.1 | 5.6 | 3 | 0.7 | 4.2 |
Zodariidae | Palaestina expolita Pickard-Cambridge | VS | Spec | - | - | - | 7 | 1.3 | 9.7 | 15 | 3.6 | 15.3 |
Zodarion frenatum Simon | VS | Spec | 11 | 2.3 | 11.6 | 20 | 3.8 | 8.3 | 15 | 3.6 | 12.5 | |
Zodarion spinibarbe Wunderlich | VS | Spec | 77 | 16.1 | 52.2 | 125 | 23.7 | 51.4 | 31 | 7.5 | 27.8 |
Control | Fescue | Clover | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Size | Feeding Habit | n | D | C | n | D | C | n | D | C |
Tapinopterus creticus Frivaldszky von Frivald | L | Carn | 269 | 78.2 | 66.7 | 153 | 35.7 | 62.5 | 150 | 56.6 | 63.8 |
Syntomus fuscomaculatus Motschulsky | VS | Carn | 7 | 2.0 | 8.7 | 20 | 4.7 | 18.1 | 5 | 1.9 | 7.2 |
Carabus banoni Dejean | L | Carn | 20 | 5.8 | 21.7 | 8 | 1.9 | 8.3 | 11 | 4.2 | 11.6 |
Olisthopus fuscatus Dejean | S | Herb | 7 | 2.0 | 8.7 | 5 | 1.2 | 6.9 | 7 | 2.6 | 8.7 |
Asaphidion sp. | S | Carn | 1 | 0.3 | 1.4 | 1 | 0.2 | 1.4 | 1 | 0.4 | 1.4 |
Bembidion tethys Netolitzky | VS | Carn | - | - | - | 78 | 18.2 | 25.0 | 20 | 7.5 | 10.1 |
Bembidion splendidum Sturm | VS | Carn | 7 | 2.0 | 8.7 | 8 | 1.9 | 9.7 | 1 | 0.4 | 1.4 |
Notiophilus palustris Duftschmid | S | Spec | 2 | 0.6 | 2.9 | - | - | - | - | - | - |
Microlestes sp. | VS | Carn | 3 | 0.9 | 4.3 | 62 | 14.5 | 29.2 | 30 | 11.3 | 20.3 |
Siagona europaea Dejean | M | Spec | - | - | - | 45 | 10.5 | 25.0 | 18 | 6.8 | 15.9 |
Acinopus laevigatus Ménétries | M | Herb | 1 | 0.3 | 1.4 | 16 | 3.7 | 16.7 | - | - | - |
Ditomus calydonius Rossi | M | Herb | 1 | 0.3 | 1.4 | 2 | 0.5 | 2.8 | - | - | - |
Carterus angustipennis Chaudoir | M | Herb | - | - | - | 1 | 0.2 | 1.4 | - | - | - |
Scybalicus oblongiusculus Dejean | M | Herb | - | - | - | 3 | 0.7 | 4.2 | - | - | - |
Chlaenius decipiens Dufour | M | Carn | 1 | 0.3 | 1.4 | - | - | - | - | - | - |
Platytarus faminii Dejean | M | Carn | 4 | 1.2 | 5.8 | 16 | 3.7 | 15.3 | 7 | 2.6 | 8.7 |
Harpalus distinguendus Duftschmid | M | Omni | 21 | 6.1 | 13.0 | 7 | 1.6 | 9.7 | 13 | 4.9 | 13.0 |
Ophonus cordatus Duftschmid | M | Herb | - | - | - | 3 | 0.7 | 2.8 | 1 | 0.4 | 1.4 |
Oedesis caucasicus Dejean | M | Herb | - | - | - | - | - | - | 1 | 0.4 | 1.4 |
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity–Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Loizou, E.; Spinthiropoulos, K.; Kalogiannidis, S.; Chatzitheodoridis, F.; Kalfas, D.; Tzilantonis, G. Enhancing climate resilience and food security in Greece through agricultural biodiversity. Land 2025, 14, 838. [Google Scholar] [CrossRef]
- Karamaouna, F.; Kati, V.; Volakakis, N.; Varikou, K.; Garantonakis, N.; Economou, L.; Birouraki, A.; Markellou, E.; Liberopoulou, S.; Edwards, M. Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agric. Ecosyst. Environ. 2019, 274, 76–89. [Google Scholar] [CrossRef]
- Kati, V.; Karamaouna, F.; Economou, L.; Mylona, P.V.; Samara, M.; Mitroiu, M.-D.; Barda, M.; Edwards, M.; Liberopoulou, S. Sown wildflowers enhance habitats of pollinators and beneficial arthropods in a tomato field margin. Plants 2021, 10, 1003. [Google Scholar] [CrossRef]
- Barda, M.; Karamaouna, F.; Kati, V.; Perdikis, D. Do patches of flowering plants enhance insect pollinators in apple orchards? Insects 2023, 14, 208. [Google Scholar] [CrossRef]
- Stathakis, T.; Economou, L.; Barda, M.; Angelioudakis, T.; Kati, V.; Karamaouna, F. Potential of hedgerows with aromatic plants as reservoirs of natural enemies of pests in orange orchards. Insects 2023, 14, 391. [Google Scholar] [CrossRef] [PubMed]
- Karamaouna, F.; Kati, V.; Economou, L.; Troyanos, G.; Samara, M.; Liberopoulou, S.; Barda, M.; Mitroiu, M.-D.; Edwards, M. Selected flowering plants as a habitat for pollinators and natural enemies in field margins of a watermelon crop—Implications for crop yield. Int. J. Pest Manag. 2024, 70, 920–936. [Google Scholar] [CrossRef]
- Barda, M.S.; Karamaouna, F.; Kati, V.; Stathakis, T.I.; Economou, L.P.; Perdikis, D.C. Flowering plant patches to support the conservation of natural enemies of pests in apple orchards. Agric. Ecosyst. Environ. 2025, 381, 109405. [Google Scholar] [CrossRef]
- Kati, V.; Stathakis, T.; Economou, L.; Mylonas, P.; Barda, M.; Angelioudakis, T.; Parlapani, A.B.; Tsamis, I.; Karamaouna, F. Processing tomato crop benefits from flowering plants in field margins that support pollinators and natural enemies. Agronomy 2025, 15, 1558. [Google Scholar] [CrossRef]
- Michail, I.; Pantazis, C.; Solomos, S.; Michailidis, M.; Molassiotis, A.; Gkisakis, V. Cover crops for carbon mitigation and biodiversity enhancement: A case study of an olive grove in Messinia, Greece. Agriculture 2025, 15, 898. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Rivers, A.N.; Mullen, C.A.; Barbercheck, M.E. Cover crop species and management influence predatory arthropods and predation in an organically managed, reduced-tillage cropping system. Environ. Entomol. 2018, 47, 340–355. [Google Scholar] [CrossRef]
- Carmona, G.I.; Delserone, L.M.; Campos, J.N.D.; de Almeida, T.F.; Ozório, D.V.B.; Cardona, J.D.B.; Wright, R.; McMechan, A.J. Does cover crop management affect arthropods in the subsequent corn and soybean crops in the United States? A systematic review. Ann. Entomol. Soc. Am. 2021, 114, 151–162. [Google Scholar] [CrossRef]
- Abajue, M.C.; Ogwu, M.C. Sustainable alternative land management strategies and their impacts on soil arthropod diversity. In Sustainable Soil Systems in Global South; Ogwu, M.C., Izah, S.C., Dessureault-Rompré, J., Gasparatos, D., Eds.; Springer Nature: Singapore, 2024; pp. 497–521. [Google Scholar]
- Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998, 7, 1207–1219. [Google Scholar] [CrossRef]
- Filser, J. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth International Colloquium on Apterygota, České Budějovice 2000: Apterygota at the beginning of the third millennium. Pedobiologia 2002, 46, 234–245. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Thanuja, A.; Dori, B.; Panigrahi, C.K.; Gautam, S.K.; Gawaria, J.; Sarangi, S.; Chaware, G.G.; Mandal, I. Ecology of soil-dwelling insects and their influence on crop health: A review. Int. J. Environ. Clim. Change 2025, 15, 285–296. [Google Scholar] [CrossRef]
- Dassou, A.G.; Tixier, P. Response of pest control by generalist predators to local-scale plant diversity: A meta-analysis. Ecol. Evol. 2016, 6, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Dassou, A.G.; Carval, D.; Dépigny, S.; Fansi, G.; Tixier, P. Ant abundance and cosmopolites sordidus damage in plantain fields as affected by intercropping. Biol. Control 2015, 81, 51–57. [Google Scholar] [CrossRef]
- Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999, 74, 187–228. [Google Scholar] [CrossRef]
- Pekár, S.; Michalko, R.; Loverre, P.; Líznarová, E.; Černecká, Ľ. Biological control in winter: Novel evidence for the importance of generalist predators. J. Appl. Ecol. 2015, 52, 270–279. [Google Scholar] [CrossRef]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 2016, 222, 138–147. [Google Scholar] [CrossRef]
- Benamú, M.A.; Lacava, M.; García, L.F.; Santana, M.; Viera, C. Spiders associated with agroecosystems: Roles and perspectives. In Behaviour and Ecology of Spiders: Contributions from the Neotropical Region; Viera, C., Gonzaga, M.O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 275–302. [Google Scholar]
- Thiele, H.-U. Carabid Beetles in Their Environments; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Šerić Jelaska, L.; Ivanković Tatalović, L.; Kostanjšek, F.; Kos, T. Ground beetle assemblages and distribution of functional traits in olive orchards and vineyards depend on the agricultural management practice. BioControl 2022, 67, 275–286. [Google Scholar] [CrossRef]
- IOC Statistics. 2023. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/12/IOC-Olive-Oil-Dashboard-2.html (accessed on 7 February 2023).
- Gkisakis, V.; Volakakis, N.; Kollaros, D.; Bàrberi, P.; Kabourakis, E.M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Environ. 2016, 218, 178–189. [Google Scholar] [CrossRef]
- Sommaggio, D.; Peretti, E.; Burgio, G. The effect of cover plants management on soil invertebrate fauna in vineyard in northern Italy. BioControl 2018, 63, 795–806. [Google Scholar] [CrossRef]
- Sáenz-Romo, M.G.; Veas-Bernal, A.; Martínez-García, H.; Ibáñez-Pascual, S.; Martínez-Villar, E.; Campos-Herrera, R.; Marco-Mancebón, V.S.; Pérez-Moreno, I. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 2019, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Tortosa, F.S.; Carpio, A.J. Structure of canopy and ground-dwelling arthropod communities in olive orchards is determined by the type of soil cover. Eur. J. Entomol. 2021, 118, 159–170. [Google Scholar] [CrossRef]
- Perera-Fernández, L.G.; de Pedro, L.; Sanchez, J.A. Sown covers enhance the diversity and abundance of ground-dwelling predators in Mediterranean pear orchards. Agronomy 2023, 13, 3049. [Google Scholar] [CrossRef]
- Crézé, C.M.; Horwath, W.R. Cover cropping: A malleable solution for sustainable agriculture? Meta-analysis of ecosystem service frameworks in perennial systems. Agronomy 2021, 11, 862. [Google Scholar] [CrossRef]
- Hohbein, R.R.; Conway, C.J. Pitfall traps: A review of methods for estimating arthropod abundance. Wildl. Soc. Bull. 2018, 42, 597–606. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Park, Y.K.; Jung, J.-K.; Lee, Y.G.; Park, C.W.; Park, Y.-S. Effects of preservatives in pitfall traps for collecting arthropods: A comparison of ethylene glycol and five alternative preservatives. J. Asia-Pac. Biodivers. 2022, 15, 541–546. [Google Scholar] [CrossRef]
- Werner, F.G.; Chandler, D.S. Anthicidae (Insecta: Coleoptera). Fauna N. Z. 1995, 34, 1–64. [Google Scholar] [CrossRef]
- Majka, C.G. New Records of Melyridae (Coleoptera) from the Maritime Provinces of Canada. Can. Entomol. 2005, 137, 325–327. [Google Scholar] [CrossRef]
- Triplehorn, C.A.; Johnson, N.F.; Borror, D.J. Borror and Delong’s Introduction to the Study of Insects, 7th ed.; Thompson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Majka, C.G. The Flat Bark Beetles (Coleoptera, Silvanidae, Cucujidae, Laemophloeidae) of Atlantic Canada. ZooKeys 2008, 2, 221–238. [Google Scholar] [CrossRef]
- Resh, V.H.; Cardé, R.T. (Eds.) Encyclopedia of Insects, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Arndt, E.; Schnitter, P.; Sfenthourakis, S.; Wrase, D.W. (Eds.) Ground Beetles (Carabidae) of Greece; Series Faunistica; Pensoft: Sofia, Bulgaria, 2011; Volume 100, p. 393. [Google Scholar]
- Nentwig, W.; Blick, T.; Bosmans, R.; Gloor, D.; Hänggi, A.; Kropf, C. Spiders of Europe. Available online: https://www.araneae.nmbe.ch (accessed on 2 February 2024).
- Tischler, W. Grundzüge der Terrestrischen Tierökologie; Vieweg+Teubner Verlag: Wiesbaden, Germany, 1949. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.; et al. Vegan: Community Ecology Package. R Package Version 2.7-1. 2025. Available online: http://CRAN.R-project.org/package=vegan (accessed on 10 June 2025).
- Baselga, A.; Orme, D.; Villeger, S.; Bortoli, J.D.; Leprieur, F.; Logez, M.; Martinez-Santalla, S.; Martin-Devasa, R.; Gomez-Rodriguez, C.; Crujeiras, R.M.; et al. Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R Package Version 1.6.1. 2025. Available online: https://CRAN.R-project.org/package=betapart (accessed on 10 August 2025).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Cardoso, P.; Pekár, S.; Jocqué, R.; Coddington, J.A. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 2011, 6, e21710. [Google Scholar] [CrossRef]
- Homburg, K.; Homburg, N.; Schäfer, F.; Schuldt, A.; Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 2014, 7, 195–205. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology. R Package Version 1.0-12.3. 2023. Available online: https://CRAN.R-project.org/package=FD (accessed on 10 June 2025).
- Ogle, D.H.; Doll, J.C.; Wheeler, A.P. FSA: Simple Fisheries Stock Assessment Methods. R Package Version 0.10.0. 2025. Available online: https://CRAN.R-project.org/package=FSA (accessed on 10 June 2025).
- Fernández, D.E.; Cichón, L.I.; Sánchez, E.E.; Garrido, S.A.; Gittins, C. Effect of different cover crops on the presence of arthropods in an organic apple (Malus domestica Borkh) orchard. J. Sustain. Agric. 2008, 32, 197–211. [Google Scholar] [CrossRef]
- Cruz-Miralles, J.; Guzzo, M.; Ibáñez-Gual, M.V.; Dembilio, Ó.; Jaques, J.A. Ground-covers affect the activity density of ground-dwelling predators and their impact on the mediterranean fruit fly, Ceratitis capitata. BioControl 2022, 67, 583–592. [Google Scholar] [CrossRef]
- Blubaugh, C.K.; Huss, C.P.; Lindell, H.C.; Spann, G.L.; Basinger, N.T. Cover crops dismantle keystone ant/aphid mutualisms to enhance insect pest suppression and weed biocontrol. Agric. For. Entomol. 2025, 27, 294–303. [Google Scholar] [CrossRef]
- Dix, M.; Baxendale, F. Insect pests and arthropod predators associated with tree-turf landscapes. J. Entomol. Sci. 1997, 32, 257–270. [Google Scholar]
- Holway, D.A.; Lach, L.; Suarez, A.V.; Tsutsui, N.D.; Case, T.J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 2002, 33, 181–233. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Kelly, C.; Fonte, S.J.; Shrestha, A.; Daane, K.M.; Mitchell, J.P. Winter cover crops and no-till promote soil macrofauna communities in irrigated, Mediterranean cropland in California, USA. Appl. Soil Ecol. 2021, 166, 104068. [Google Scholar] [CrossRef]
- Fiorini, A.; Remelli, S.; Boselli, R.; Mantovi, P.; Ardenti, F.; Trevisan, M.; Menta, C.; Tabaglio, V. Driving crop yield, soil organic C pools, and soil biodiversity with selected winter cover crops under no-till. Soil Tillage Res. 2022, 217, 105283. [Google Scholar] [CrossRef]
- Mayer, P.M.; Tunnell, S.J.; Engle, D.M.; Jorgensen, E.E.; Nunn, P. Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems 2005, 8, 200–209. [Google Scholar] [CrossRef]
- Nakamoto, T.; Tsukamoto, M. Abundance and activity of soil organisms in fields of maize grown with a white clover living mulch. Agric. Ecosyst. Environ. 2006, 115, 34–42. [Google Scholar] [CrossRef]
- Koukoura, Z.; Mamolos, A.P.; Kalburtji, K.L. Decomposition of dominant plant species litter in a semi-arid grassland. Appl. Soil Ecol. 2003, 23, 13–23. [Google Scholar] [CrossRef]
- de Pedro, L.; Ortín-Angulo, M.C.; Miñano, J.; López-Gallego, E.; Sanchez, J.A. Structure of the assemblages of spiders in Mediterranean pear orchards and the effect of intensity of spraying. Insects 2020, 11, 553. [Google Scholar] [CrossRef]
- Kubiak, K.L.; Pereira, J.A.; Tessaro, D.; Santos, S.A.P.; Benhadi-Marín, J. Functional diversity of epigeal spiders in the olive grove agroecosystem in northeastern Portugal: A comparison between crop and surrounding semi-natural habitats. Entomol. Exp. Appl. 2022, 170, 449–458. [Google Scholar] [CrossRef]
- Cushing, P.E. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, 2012, 151989. [Google Scholar] [CrossRef]
- Beaumelle, L.; Auriol, A.; Grasset, M.; Pavy, A.; Thiéry, D.; Rusch, A. Benefits of increased cover crop diversity for predators and biological pest control depend on the landscape context. Ecol. Solut. Evid. 2021, 2, e12086. [Google Scholar] [CrossRef]
- Maloney, D.; Drummond, F.A.; Alford, R. Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations; MAFES Technical Bulletin 190; University of Maine: Orono, MN, USA, 2003. [Google Scholar]
- Nyffeler, M.; Sunderland, K.D. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agric. Ecosyst. Environ. 2003, 95, 579–612. [Google Scholar] [CrossRef]
- Álvarez, H.A.; Jiménez-Muñoz, R.; Morente, M.; Campos, M.; Ruano, F. Ground cover presence in organic olive orchards affects the interaction of natural enemies against Prays oleae, promoting an effective egg predation. Agric. Ecosyst. Environ. 2021, 315, 107441. [Google Scholar] [CrossRef]
- Rivers, A.; Mullen, C.; Wallace, J.; Barbercheck, M. Cover crop-based reduced tillage system influences Carabidae (Coleoptera) activity, diversity and trophic group during transition to organic production. Renew. Agric. Food Syst. 2017, 32, 538–551. [Google Scholar] [CrossRef]
- Triquet, C.; Roume, A.; Wezel, A.; Tolon, V.; Ferrer, A. In-field cover crop strips support carabid communities and shape the ecological trait repartition in maize fields. Agric. For. Entomol. 2023, 25, 152–163. [Google Scholar] [CrossRef]
- Trihas, A.; Legakis, A. Phenology and patterns of activity of ground Coleoptera in an insular Mediterranean ecosystem (Cyclades, Greece). Pedobiologia 1991, 35, 327–335. [Google Scholar] [CrossRef]
- Blake, S.; Foster, G.N.; Eyre, M.D.; Luff, M.L. Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 1994, 38, 502–512. [Google Scholar] [CrossRef]
- Hanson, H.I.; Palmu, E.; Birkhofer, K.; Smith, H.G.; Hedlund, K. Agricultural land use determines the trait composition of ground beetle communities. PLoS ONE 2016, 11, e0146329. [Google Scholar] [CrossRef]
- Ribera, I.; Dolédec, S.; Downie, I.S.; Foster, G.N. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 2001, 82, 1112–1129. [Google Scholar] [CrossRef]
- Bauer, T.; Talarico, F.; Mazzei, A.; Giglio, A.; Zetto-Brandmayr, T.; Brandmayr, P.; Betz, O. Hunting ants in Mediterranean clay soils: Life history of Siagona europaea (Coleoptera, Carabidae). Ital. J. Zool. 2005, 72, 33–42. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Dosdall, L.M.; Willenborg, C.J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 2015, 63, 355–376. [Google Scholar] [CrossRef]
- Cividanes, F.J. Carabid beetles (Coleoptera: Carabidae) and biological control of agricultural pests in Latin America. Ann. Entomol. Soc. Am. 2021, 114, 175–191. [Google Scholar] [CrossRef]
- Orsini, M.M.; Daane, K.M.; Sime, K.R.; Nelson, E.H. Mortality of olive fruit fly pupae in California. Biocontrol Sci. Technol. 2007, 17, 797–807. [Google Scholar] [CrossRef]
- Dinis, A.M.; Pereira, J.A.; Pimenta, M.C.; Oliveira, J.; Benhadi-Marín, J.; Santos, S.A.P. Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J. Appl. Entomol. 2016, 140, 677–687. [Google Scholar] [CrossRef]
- Lantero, E.; Ortega, M.; Sánchez-Ramos, I.; González-Núñez, M.; Fernández, C.E.; Rescia, A.J.; Matallanas, B.; Callejas, C.; Pascual, S. Effect of local and landscape factors on abundance of ground beetles and assessment of their role as biocontrol agents in the olive growing area of southeastern Madrid, Spain. BioControl 2019, 64, 685–696. [Google Scholar] [CrossRef]
- Pizzolotto, R.; Mazzei, A.; Bonacci, T.; Scalercio, S.; Iannotta, N.; Brandmayr, P. Ground beetles in Mediterranean olive agroecosystems: Their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS ONE 2018, 13, e0194551. [Google Scholar] [CrossRef]
- Albertini, A.; Pizzolotto, R.; Petacchi, R. Carabid patterns in olive orchards and woody semi-natural habitats: First implications for conservation biological control against Bactrocera oleae. BioControl 2017, 62, 71–83. [Google Scholar] [CrossRef]
- Rosenheim, J.A.; Kaya, H.K.; Ehler, L.E.; Marois, J.J.; Jaffee, B.A. Intraguild predation among biological-control agents: Theory and evidence. Biol. Control 1995, 5, 303–335. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Gurr, G.M.; Campos, M. Is ground cover vegetation an effective biological control enhancement strategy against olive pests? PLoS ONE 2015, 10, e0117265. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Cabanillas, D.; López-Gallego, E.; Perera-Fernández, L.G. Sown ground cover in pear orchards influences the abundance of key predators with variable results on pest control depending on the species. BioControl 2025, 70, 487–500. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Álvarez, H.A.; García-García, A.; Sandoval, P.; Martín-Blázquez, R.; Seifert, B.; Tinaut, A.; Ruano, F. Elucidating the trophic role of Tapinoma ibericum (Hymenoptera: Formicidae) as a potential predator of olive pests. J. Appl. Entomol. 2023, 147, 667–675. [Google Scholar] [CrossRef]
- Martín-Devasa, R.; Jiménez-Valverde, A.; Leprieur, F.; Baselga, A.; Gómez-Rodríguez, C. Dispersal limitation shapes distance-decay patterns of European spiders at the continental scale. Glob. Ecol. Biogeogr. 2024, 33, e13810. [Google Scholar] [CrossRef]
- Adu-Acheampong, S.; Bazelet, C.S.; Samways, M.J. Extent to which an agricultural mosaic supports endemic species-rich grasshopper assemblages in the Cape Floristic Region Biodiversity Hotspot. Agric. Ecosyst. Environ. 2016, 227, 52–60. [Google Scholar] [CrossRef]
Fixed Factors | F | df1 | df2 | p-Value | AIC | BIC |
---|---|---|---|---|---|---|
Total arthropods | ||||||
Treatment | 11.328 | 2 | 177 | <0.001 | 340.676 | 382.549 |
Time | 35.696 | 11 | 177 | <0.001 | ||
Treatment × Time | 6.024 | 22 | 177 | <0.001 | ||
Predators | ||||||
Treatment | 5.496 | 2 | 177 | 0.005 | 252.133 | 294.006 |
Time | 17.999 | 11 | 177 | <0.001 | ||
Treatment × Time | 2.675 | 22 | 177 | <0.001 | ||
Omnivores | ||||||
Treatment | 8.658 | 2 | 177 | <0.001 | 443.728 | 485.601 |
Time | 47.532 | 11 | 177 | <0.001 | ||
Treatment × Time | 4.737 | 22 | 177 | <0.001 | ||
Herbivores | ||||||
Treatment | 12.588 | 2 | 177 | <0.001 | 459.951 | 501.824 |
Time | 17.470 | 11 | 177 | <0.001 | ||
Treatment × Time | 1.841 | 22 | 177 | 0.016 | ||
Saprophagous | ||||||
Treatment | 14.338 | 2 | 177 | <0.001 | 413.846 | 455.720 |
Time | 16.355 | 11 | 177 | <0.001 | ||
Treatment × Time | 12.716 | 22 | 177 | <0.001 | ||
Predator:Herbivore | ||||||
Treatment | 13.556 | 2 | 165 | <0.001 | 514.951 | 555.634 |
Time | 6.890 | 11 | 165 | <0.001 | ||
Treatment × Time | 1.237 | 22 | 165 | 0.223 | ||
Spiders | ||||||
Treatment | 2.855 | 2 | 177 | 0.060 | 313.580 | 355.454 |
Time | 4.254 | 11 | 177 | <0.001 | ||
Treatment × Time | 3.218 | 22 | 177 | <0.001 | ||
Carabidae | ||||||
Treatment | 3.356 | 2 | 177 | 0.037 | 541.027 | 582.901 |
Time | 22.295 | 11 | 177 | <0.001 | ||
Treatment × Time | 0.859 | 22 | 177 | 0.649 |
Treatments | ||||||
---|---|---|---|---|---|---|
Control | Fescue | Clover | χ2 | df | p Value | |
Species richness | 3.86 ± 0.25 | 4.28 ± 0.30 | 4.18 ± 0.28 | 0.680 | 2 | 0.712 |
Shannon index (H′) | 1.20 ± 0.07 | 1.38 ± 0.08 | 1.33 ± 0.08 | 4.572 | 2 | 0.102 |
Functional richness (FRic) | 3.66 ± 0.20 | 3.50 ± 0.20 | 3.14 ± 0.17 | 3.538 | 2 | 0.171 |
Functional dispersion (FDis) | 0.37 ± 0.02 | 0.37 ± 0.02 | 0.34 ± 0.02 | 2.281 | 2 | 0.320 |
Treatments | ||||||
---|---|---|---|---|---|---|
Control | Fescue | Clover | χ2 | df | p Value | |
Species richness | 1.87 ± 0.14 b | 2.87 ± 0.23 a | 2.33 ± 0.17 ab | 10.476 | 2 | 0.005 |
Shannon index (H′) | 0.40 ± 0.06 b | 0.84 ± 0.08 a | 0.61 ± 0.07 ab | 18.122 | 2 | 0.0001 |
Functional richness (FRic) | 1.64 ± 0.12 b | 2.54 ± 0.18 a | 2.00 ± 0.12 ab | 17.313 | 2 | 0.0002 |
Functional dispersion (FDis) | 0.13 ± 0.03 b | 0.25 ± 0.02 a | 0.23 ± 0.03 a | 11.190 | 2 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelioudakis, T.; Koliopoulos, G.; Stathakis, T. Effect of Cover Cropping on the Abundance, Community Composition and Functional Diversity of Ground-Dwelling Arthropods in a Mediterranean Olive Grove. Diversity 2025, 17, 621. https://doi.org/10.3390/d17090621
Angelioudakis T, Koliopoulos G, Stathakis T. Effect of Cover Cropping on the Abundance, Community Composition and Functional Diversity of Ground-Dwelling Arthropods in a Mediterranean Olive Grove. Diversity. 2025; 17(9):621. https://doi.org/10.3390/d17090621
Chicago/Turabian StyleAngelioudakis, Theodoros, George Koliopoulos, and Theodoros Stathakis. 2025. "Effect of Cover Cropping on the Abundance, Community Composition and Functional Diversity of Ground-Dwelling Arthropods in a Mediterranean Olive Grove" Diversity 17, no. 9: 621. https://doi.org/10.3390/d17090621
APA StyleAngelioudakis, T., Koliopoulos, G., & Stathakis, T. (2025). Effect of Cover Cropping on the Abundance, Community Composition and Functional Diversity of Ground-Dwelling Arthropods in a Mediterranean Olive Grove. Diversity, 17(9), 621. https://doi.org/10.3390/d17090621