Chemical Composition of Thymus Species from Bulgarian Flora
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Essential Oils
2.3. Plant Extracts
2.4. Chemicals and Reagents
2.5. GC-MS Analysis
2.6. HPLC Analysis
3. Results
3.1. Essential Oil Yield
3.2. GC-MS Profiling of Thymus Species
3.3. Phenolic Composition of Thymus Ethanolic Extracts
4. Discussion
4.1. Essential Oil Yield
4.2. Essential Oil Composition
4.3. Flavonoid and Phenolic Acid Content
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Asst. Prof. | Assistant Professor |
GC-MS | Gas Chromatography coupled with Mass Spectrometry |
HPLC | High-Performance Liquid Chromatography |
DW | Dry weight |
MH | Monoterpene hydrocarbons |
MO | Oxygenated monoterpenes |
NF | Not found |
O | Other compounds |
Ph. Eur. | European Pharmacopoeia |
RI | Retention indices |
SH | Sesquiterpene hydrocarbons |
SO | Oxygenated sesquiterpenes |
T. callieri | Thymus callieri Borbas ex Velen. (botanical abbreviation) |
Tc | Thymus callieri (species code) |
T. glabrescens | Thymus glabrescens Willd. (botanical abbreviation) |
Tg | Thymus glabrescens (species code) |
T. odoratissimus | Thymus odoratissimus Mill. (botanical abbreviation) |
T. pulegioides | Thymus pulegioides L. (botanical abbreviation) |
Tp | Thymus pulegioides (species code) |
T. roegneri | Thymus roegneri K. Koch (botanical abbreviation) |
T. sibthorpii | Thymus sibthorpii Benth. (botanical abbreviation) |
Ts | Thymus sibthorpii (species code) |
T. zygioides | Thymus zygioides Griseb. (botanical abbreviation) |
Tz | Thymus zygioides (species code) |
ULQ | Under the limit of quantification |
References
- Morales, R. The History Botany and Taxonomy of the Genus Thymus. In Thyme—The Genus Thymus; Stahl-Biskup, E., Saez, F., Eds.; Taylor & Francis: London, UK, 2002; pp. 11–43. [Google Scholar]
- Goyal, S.; Verma, R.S.; Chauhan, A.; Padalia, R.C. Comparative Study of the Volatile Constituents of Thymus serpyllum L. Grown at Different Altitudes of Western Himalayas. SN Appl. Sci. 2020, 2, 1208. [Google Scholar] [CrossRef]
- Ložienė, K.; Venskutonis, P.R.; Vaičiūnienė, J. Chemical Diversity of Essential Oil of Thymus pulegioides L. and Thymus serpyllum L. Growing in Lithuania. Biologija 2002, 1, 28–30. [Google Scholar]
- Ložienė, K.; Vaičiulytė, V. Geraniol and Carvacrol in Essential Oil Bearing Thymus pulegioides: Distribution in Natural Habitats and Phytotoxic Effect. Molecules 2022, 27, 986. [Google Scholar] [CrossRef]
- Paaver, U.; Orav, A.; Arak, E.; Kailas, T.; Müürisepp, M.; Koppel, I. Phytochemical Analysis of the Essential Oil of Thymus serpyllum L. Growing Wild in Estonia. Nat. Prod. Res. 2008, 22, 108–115. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Silva, A.M.; Taghouti, M.; Schäfer, J.; Santos, P.M.P.; Souto, E.B.; Serra, A.T.; Barros, L.; Ferreira, I.C.F.R. Chemical Characterization and Bioactive Properties of Decoctions and Hydroethanolic Extracts of Thymus carnosus Boiss. J. Funct. Foods 2018, 43, 154–164. [Google Scholar] [CrossRef]
- Kameníková, M.; Kozics, K.; Vaverková, Š.; Magurová, D.; Ďurišová, G.; Jampílek, J. Polyphenolic Compounds and Essential Oil Analysis of Selected Species of the Genus Thymus/Analýza Fenolových Zložiek a Analýza Silice Vybraných Druhov Rodu Thymus. Acta Fac. Pharm. Univ. Comen. 2015, 62, 12–17. [Google Scholar] [CrossRef]
- Beicu, R.; Vlaicu, P.A.; Pătruică, S.; Drăghici, G.A.; Beicu, C.; Avramescu, S.M. Antimicrobial Potential and Phytochemical Profile of Wild and Cultivated Populations of Thyme (Thymus sp.) Growing in Western Romania. Plants 2021, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; De Feo, V.; Formisano, C.; Mancini, E.; Valeria, D.; Del Pezzo, M.; De Palma, M.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oils from Two Species of Thymus Growing Wild in Southern Italy. Molecules 2009, 14, 4614–4624. [Google Scholar] [CrossRef] [PubMed]
- Zhumakanova, B.S.; Mamytbekova, A.K.; Muratuly, B.; Yili, A.; Mamytbekov, N.K.; Umerova, S.T.; Akhmedov, K.A.; Daniyarov, K.T.; Makhambet, Y.D. Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules 2021, 26, 3193. [Google Scholar] [CrossRef]
- Jianu, C.; Pop, G.; Stănilă, A.; Lukinich-Gruia, A.T.; Horhat, F.G.; Tărăbuţă, L.; Cocan, I. In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil. Antioxidants 2022, 11, 2472. [Google Scholar] [CrossRef]
- Boycheva, P. Top 10 among the Most Used Medicinal Plants of the Local Population along the North Black Sea Coast (Bulgaria). In Proceedings of the Sixth Student Scientific Conference Ecology and Environment, Shumen, Bulgaria, 20–21 April 2018; pp. 136–147. (In Bulgarian). [Google Scholar]
- Babotă, M.; Frumuzachi, O.; Nicolescu, A.; Dias, M.I.; Pinela, J.; Barros, L.; Añibarro-Ortega, M.; Stojković, D.; Carević, T.; Mocan, A. Thymus Species from Romanian Spontaneous Flora as Promising Source of Phenolic Secondary Metabolites with Health-Related Benefits. Antioxidants 2023, 12, 390. [Google Scholar] [CrossRef]
- Euro+Med PlantBase. Thymus. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 11 July 2024).
- Assyov, B.; Petrova, A.; Dimitrov, D.; Vassilev, R. Conspectus of the Bulgarian Vascular Flora: Distribution Maps and Floristic Elements, 4th ed.; Bulgarian Biodiversity Foundation: Sofia, Bulgaria, 2012; pp. 414–415. [Google Scholar]
- Krasteva, G.; Vasileva, I.; Bratkov, V.; Ionkova, I. Metabolite Profiling of Gardenia jasminoides Ellis In Vitro Cultures with Different Levels of Differentiation. Molecules 2022, 27, 8906. [Google Scholar] [CrossRef] [PubMed]
- Trendafilova, A.; Todorova, M.; Ivanova, V.; Zhelev, P.; Aneva, I. Essential Oil Composition of Ten Species from Sect. Serpyllum of Genus Thymus Growing in Bulgaria. Diversity 2023, 15, 759. [Google Scholar] [CrossRef]
- Senatore, F. Influence of Harvesting Time on Yield and Composition of the Essential Oil of a Thyme (Thymus pulegioides L.) Growing Wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- Pavel, M.; Ristić, M.; Stević, T. Essential Oils of Thymus pulegioides and Thymus glabrescens from Romania: Chemical Composition and Antimicrobial Activity. J. Serb. Chem. Soc. 2010, 75, 27–34. [Google Scholar] [CrossRef]
- Trendafilova, A.; Todorova, M.; Ivanova, V.; Zhelev, P.; Aneva, I. Essential Oil Composition of Five Thymus Species from Bulgaria. Chem. Biodivers. 2021, 18, e2100498. [Google Scholar] [CrossRef]
- Tsiftsoglou, O.S.; Karousou, R.; Giatropoulos, A.; Koliopoulos, G.; Skoula, M. Temporal Variation on Chemical Composition, Anti-Inflammatory and Antioxidant Activities of the Essential Oils of Thymus sibthorpii Benth. (Lamiaceae) Growing Wild in Kilkis (Northern Greece). Int. J. Pharmacogn. Phytochem. Res. 2021, 13, 1–7. [Google Scholar]
- Tümen, G.; Kirimer, N.; Başer, K.H.C. Composition of the Essential Oils of Thymus Species Growing in Turkey. Chem. Nat. Compd. 1995, 31, 42–47. [Google Scholar] [CrossRef]
- Radonić, A.; Mastelić, J. Essential Oil and Glycosidically Bound Volatiles of Thymus pulegioides L. Growing Wild in Croatia. Croat. Chem. Acta 2008, 81, 599–606. [Google Scholar]
- Wester, P.; Möseler, B.M.; Knöss, W. Intra-Population Terpene Polymorphism of Thymus pulegioides L.: Evidence for Seven Chemotypes in a German Limestone Grassland. Biochem. Syst. Ecol. 2020, 93, 104173. [Google Scholar] [CrossRef]
- Kisgyorgy, Z.; Csedo, K.; Horster, H.; Gergely, J.; Racz, G. The volatile oil of the more important indigenous Thymus species occurring in the composition of Serpylli herba. Rev. Med. 1983, 29, 124–130. [Google Scholar]
- Radulescu, V.; Pavel, M.; Teodor, A.; Tanase, A.; Ilies, D.C. Analysis of Volatile Compounds from Infusion and Hydrodistillate Obtained from the Species Thymus pulegioides (Lamiaceae). Farmacia 2009, 57, 282–289. [Google Scholar]
- Karuza-Stojakovic, L.; Pavlovic, S.; Zivanovic, P.; Todorovic, B. Composition and Yield of Essential Oils of Various Species of the Genus Thymus L. Arh. Farm. 1989, 39, 105–111. [Google Scholar]
- Ložienė, K.; Vaičiulytė, V.; Maždžierienė, R. Influence of Meteorological Conditions on Essential Oil Composition in Geraniol-Bearing Thymus pulegioides and Thymus Hybrid. Acta Physiol. Plant. 2021, 43, 27. [Google Scholar] [CrossRef]
- Imbrea, I. Valorising Thymus glabrescens Willd. from the Aninei Mountains. Res. J. Agric. Sci. 2010, 42, 2. [Google Scholar]
- Pluhár, Z.; Bencsik, T.; Molnár, J.; Farkas, Á. Essential Oil Polymorphism of Hungarian Common Thyme (Thymus glabrescens Willd.) Populations. Nat. Prod. Commun. 2008, 3, 1934578X0800300722. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical Composition and Bioactivity of Essential Oil from Thymus Species in Balkan Peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar] [CrossRef]
- Dajic-Stevanovic, Z.; Djelic, N.; Krstic-Milosevic, D.; Mihailovic, V.; Knezevic-Vukcevic, J. Population Variability in Thymus glabrescens Willd. from Serbia: Morphology, Anatomy and Essential Oil Composition. Arch. Biol. Sci. 2008, 60, 475–483. [Google Scholar] [CrossRef]
- Ilić, B.S.; Pavlović, S.Z.; Tesević, V.; Devrnja, N.; Milenković, M.; Ristić, M. An In Vitro Synergistic Interaction of Combinations of Thymus glabrescens Essential Oil and Its Main Constituents with Chloramphenicol. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Maksimović, Z.; Stojanović, D.; Šoštarić, I.; Dajić, Z.; Ristić, M. Composition and Radical-Scavenging Activity of Thymus glabrescens Willd. (Lamiaceae) Essential Oil. J. Sci. Food Agric. 2008, 88, 2036–2041. [Google Scholar] [CrossRef]
- Tümen, G.; Kirimer, N.; Başer, K.H.C. Composition of the Essential Oils of Thymus atticus and Thymus roegneri from Turkey. J. Essent. Oil Res. 1997, 9, 473–474. [Google Scholar] [CrossRef]
- Tzakou, O.; Couladis, M. Essential Oil of Thymus zygioides var. lycaonicus from Greece. J. Essent. Oil Res. 2008, 20, 442–443. [Google Scholar] [CrossRef]
- Askun, T.; Çalişkan, Ö.; Çakir, A.; Aksu, B.; Kolayli, S.; Başer, K.H.C. Preliminary Antimycobacterial Study on Selected Turkish Plants (Lamiaceae) against Mycobacterium tuberculosis and Search for Some Phenolic Constituents. BMC Complement. Altern. Med. 2013, 13, 365. [Google Scholar] [CrossRef]
- Kontogiorgis, C.; Efthimiou, E.; Hadjipavlou-Litina, D.; Lialiaris, S.; Tzakou, O. Study of the Antioxidant Activity of Thymus sibthorpii Bentham (Lamiaceae). J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. S4), 154–159. [Google Scholar] [CrossRef]
- Raudone, L.; Raudonis, R.; Jakštas, V.; Venskutonis, P.R. Phenological Changes in Triterpenic and Phenolic Composition of Thymus L. Species. Ind. Crops Prod. 2017, 109, 445–451. [Google Scholar] [CrossRef]
- Boros, B.; Forgo, P.; Molnar-Perl, I.; Hohmann, J. Determination of Polyphenolic Compounds by Liquid Chromatography–Mass Spectrometry in Thymus Species. J. Chromatogr. A 2010, 1217, 7972–7980. [Google Scholar] [CrossRef]
- Mishra, T. Climate Change and Production of Secondary Metabolites in Medicinal Plants: A Review. Int. J. Herb. Med. 2016, 4, 27–30. [Google Scholar]
- Jangpangi, D.; Dobriyal, A.K.; Rawat, U.; Samant, S.S. Medicinal Plants in a Changing Climate: Understanding the Links between Environmental Stress and Secondary Metabolite Synthesis. Front. Plant Sci. 2025, 16, 1587337. [Google Scholar] [CrossRef]
- Clarke, S.M.; Mur, L.A.J.; Wood, J.E.; Scott, I.M. Salicylic Acid Dependent Signaling Promotes Basal Thermotolerance but Is Not Essential for Acquired Thermotolerance in Arabidopsis thaliana. Plant J. 2004, 38, 432–447. [Google Scholar] [CrossRef]
- Mazulin, O.V.; Fukleva, L.A.; Mazulin, H.V. Study of the Polyphenolic Compounds Accumulation in Thymus serpyllum L. Herb during the Flowering Period. Farmatsevtychnyi Zh. 2023, 2, 58–66. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and Molecular Variation in Thymus Species Using HPLC and SRAP Analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef] [PubMed]
Species | Voucher Number | Collection Date | Coordinates |
---|---|---|---|
T. sibthorpii Benth. | 108368 | May, 2024 | 43.2107° N, 27.5048° E |
T. pulegioides L. | 108369 | May, 2024 | 43.2106° N, 27.5053° E |
T. glabrescens Willd. | 108370 | May, 2024 | 43.1750° N, 27.5343° E |
T. callieri Borbas ex Velen. | 108366 | May, 2024 | 43.1749° N, 27.5342° E |
T. zygioides Griseb. | 108367 | May, 2024 | 43.2408° N, 27.2530° E |
№ | Compound | RI | RI Lit. Data | Formula | Class of Compound | % Ts | % Tp | % Tg | % Tc | % Tz |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3-Hexen-1-ol | 870 | 874 | C6H12O | O | – | – | tr | – | – |
2 | Tricyclene | 922 | 922 | C7H14O2 | O | – | – | – | – | 0.71 |
3 | α-Thujene | 924 | 924 | C10H16 | MH | – | – | 1.39 | tr | 0.88 |
4 | α-Pinene | 930 | 930 | C10H16 | MH | 0.11 | 0.1 | 0.65 | 0.18 | 8.07 |
5 | Camphene | 945 | 948 | C10H16 | MH | 0.19 | 0.16 | 0.49 | 0.31 | 11.9 |
6 | Sabinene | 964 | 964 | C10H16 | MH | – | 0.21 | 0.23 | 0.09 | 0.66 |
7 | 1-Octen-3-ol | 968 | 967 | C8H16O | O | 0.65 | 0.66 | 0.91 | 0.81 | – |
8 | 3-Octanone | 972 | 970 | C8H16O | O | 0.13 | 0.1 | 0.11 | 0.21 | – |
9 | β-Pinene | 977 | 977 | C10H16 | MH | 0.31 | 0.9 | 1.08 | 0.24 | 1.24 |
10 | 3-Octanol | 984 | 982 | C8H18O | O | 0.21 | 0.26 | 0.14 | 0.28 | 0.21 |
11 | α-Phellandrene | 995 | 995 | C10H16 | MH | – | – | 0.21 | – | – |
12 | δ-3-Carene | 997 | 999 | C10H16 | MH | – | – | 0.07 | – | – |
13 | α-Terpinene | 1006 | 1008 | C10H16 | MH | – | – | 1.65 | – | 0.52 |
14 | o-Cymene | 1015 | 1018 | C10H14 | MH | 0.15 | – | 6.93 | 0.17 | 0.94 |
15 | Limonene | 1021 | 1020 | C10H16 | MH | – | 0.24 | 0.22 | 0.05 | 5.45 |
16 | Eucalyptol | 1026 | 1025 | C10H18O | MO | 0.27 | 0.28 | 1.05 | 0.48 | 3.05 |
17 | cis-β-Ocimene | 1040 | 1040 | C10H16 | MH | – | – | 0.07 | – | 6.57 |
18 | γ-Terpinene | 1052 | 1050 | C10H16 | MH | 0.17 | 0.09 | 8.42 | 0.08 | 1.75 |
19 | cis-Sabinene hydrate | 1064 | 1062 | C10H18O | MO | – | 0.13 | 0.28 | – | – |
20 | cis-Linalool oxide | 1065 | 1065 | C10H18O2 | MO | 0.09 | – | – | 0.1 | – |
21 | α-Terpinolene | 1076 | 1077 | C10H16 | MH | – | – | 0.11 | – | 0.47 |
22 | Linalool | 1093 | 1094 | C10H18O | MO | 48.17 | 50.96 | 22.84 | 38.08 | 0.12 |
23 | Nonanal | 1095 | 1096 | C9H18O | O | – | – | – | – | 0.17 |
24 | cis-p-Menth-2-en-1-ol | 1116 | 1116 | C10H18O | MO | – | – | – | – | 0.09 |
25 | trans-p-Menth-2-en-1-ol | 1136 | 1137 | C10H18O | MO | – | – | – | – | 0.1 |
26 | cis-Verbenol | 1139 | 1140 | C10H16O | MO | – | – | – | – | 0.13 |
27 | Camphor | 1142 | 1143 | C10H16O | MO | – | – | – | – | 0.52 |
28 | Nerol oxide | 1144 | 1144 | C10H16O | MO | – | – | – | 0.07 | – |
29 | δ-Terpineol | 1168 | 1169 | C10H18O | MO | – | – | – | – | 0.06 |
30 | endo-Borneol | 1172 | 1172 | C10H18O | MO | 0.67 | 0.56 | 1.62 | 1.09 | 1.26 |
31 | Terpinen-4-ol | 1181 | 1181 | C10H18O | MO | 0.07 | 0.25 | 0.74 | 0.18 | 2.77 |
32 | α-Terpineol | 1199 | 1198 | C10H18O | MO | 0.52 | 1.96 | 0.11 | 0.18 | 0.23 |
33 | cis-Dihydrocarvone | 1200 | 1200 | C10H16O | MO | – | – | – | – | 0.13 |
34 | Decanal | 1206 | 1205 | C10H20O | O | – | – | – | – | 0.2 |
35 | trans-Piperitol | 1210 | 1211 | C10H18O | MO | – | – | – | – | 0.05 |
36 | Nerol | 1226 | 1225 | C10H18O | MO | 0.86 | – | – | 1.78 | 0.2 |
37 | Thymol methyl ether | 1229 | 1231 | C11H16O | MO | 0.35 | – | 2.57 | 0.25 | – |
38 | Carvacrol methyl ether | 1238 | 1239 | C11H16O | MO | – | – | 4.17 | – | – |
39 | β-Citral | 1239 | 1239 | C10H16O | MO | 0.37 | 0.28 | – | 0.75 | 1.26 |
40 | Geraniol | 1262 | 1263 | C10H18O | MO | 18.67 | 13.48 | – | 27.66 | – |
41 | α-Citral | 1282 | 1279 | C10H16O | MO | 0.43 | 0.38 | – | 1.09 | 1.53 |
42 | Bornyl acetate | 1305 | 1302 | C12H20O2 | MO | – | – | – | – | 0.21 |
43 | Thymol | 1312 | 1304 | C10H14O | MO | 0.22 | – | 35.35 | – | 0.5 |
44 | Carvacrol | 1323 | 1327 | C10H14O | MO | – | – | 0.17 | – | – |
45 | α-Terpinyl acetate | 1368 | 1365 | C12H20O2 | MO | – | 3.01 | – | – | – |
46 | Neryl acetate | 1377 | 1376 | C12H20O2 | MO | 0.06 | – | – | 0.06 | 0.45 |
47 | Geranyl acetate | 1406 | 1409 | C12H20O2 | MO | 12.45 | 7.54 | – | 9.51 | – |
48 | β-Bourbonene | 1413 | 1417 | C15H24 | SH | 0.6 | 0.37 | 0.13 | 0.9 | 0.87 |
49 | β-Caryophyllene | 1446 | 1442 | C15H24 | SH | 3.09 | 2.12 | 1.54 | 2.42 | 5.42 |
50 | β-Copaene | 1454 | 1459 | C15H24 | SH | 0.08 | – | tr | 0.14 | – |
51 | cis-β-Farnesene | 1471 | 1476 | C15H24 | SH | – | – | – | – | 0.43 |
52 | α-Caryophyllene | 1475 | 1480 | C15H24 | SH | 0.13 | 0.09 | 0.07 | 0.11 | 0.29 |
53 | γ-Muurolene | 1489 | 1484 | C15H24 | SH | – | – | – | – | 0.23 |
54 | Germacrene D | 1495 | 1491 | C15H24 | SH | 3.91 | 3.87 | 2.44 | 2.98 | 12.00 |
55 | Elixene | 1505 | 1492 | C15H24 | SH | – | – | – | 0.12 | 7.13 |
56 | α-Farnesene | 1508 | 1508 | C15H24 | SH | – | – | – | – | 0.35 |
57 | β-Bisabolene | 1511 | 1513 | C15H24 | SH | 4.48 | 3 | 2.73 | 3.93 | 0.73 |
58 | γ-Cadinene | 1514 | 1515 | C15H24 | SH | – | – | – | – | 0.22 |
59 | δ-Cadinene | 1518 | 1518 | C15H24 | SH | 0.06 | – | 0.05 | tr | 1.25 |
60 | β-Sesquiphellandrene | 1521 | 1523 | C15H24 | SH | 0.08 | – | 0.07 | 0.07 | – |
61 | α-Bisabolene | 1531 | 1531 | C15H24 | SH | 0.07 | – | 0.54 | 0.22 | – |
62 | Geranyl butyrate | 1538 | 1540 | C14H24O | MO | 0.07 | – | – | 0.29 | – |
63 | Spathulenol | 1555 | 1557 | C15H24O | SO | – | – | – | 0.07 | 3.2 |
64 | Caryophyllene oxide | 1559 | 1561 | C15H24O | SO | 0.2 | 0.13 | 0.14 | 0.66 | 0.6 |
65 | Neryl (S)-2-methylbutanoate | 1565 | 1562 | C15H26O2 | MO | – | – | – | – | 0.07 |
Terpene classes | ||||||||||
Monoterpene hydrocarbons (MH) | 0.93 | 1.7 | 21.52 | 1.12 | 38.45 | |||||
Oxygenated monoterpenes (MO) | 83.27 | 78.83 | 68.9 | 81.57 | 12.73 | |||||
Sesquiterpene hydrocarbons (SH) | 12.5 | 9.45 | 7.54 | 10.89 | 28.92 | |||||
Oxygenated sesquiterpenes (SO) | 0.2 | 0.13 | 0.14 | 0.73 | 3.8 | |||||
Others (O) | 0.99 | 1.02 | 1.16 | 1.3 | 1.29 | |||||
Total identified (%) | 97.89 | 91.13 | 99.29 | 95.61 | 85.19 |
Compounds | Content, μg/g DW of Plant Material | |||||
---|---|---|---|---|---|---|
Ts | Tp | Тg | Tc | Tz | ||
Phenolic acids | Gallic acid | 241.2 | 276.4 | NF * | NF | 175 |
Protocatechuic acid | 400 | 1001 | 602.6 | 318.6 | 360.2 | |
Chlorogenic acid | NF | 278.2 | NF | NF | NF | |
Vanillic acid | 545.6 | 758.6 | 438.2 | 461.4 | 489.8 | |
Caffeic acid | 119.2 | 147.6 | 89.6 | NF | 164.2 | |
Syringic acid | 134.6 | 189.8 | 242.8 | 154.2 | 125.2 | |
p-Coumaric acid | 104.4 | 127.2 | 176.6 | 143.8 | 156.6 | |
Ferulic acid | 229 | 7263.2 | 4280.6 | 6291 | 295 | |
Salicylic acid | 1518.8 | NF | NF | NF | NF | |
Rosmarinic acid | 11,483.8 | 15,783.8 | 11,667.4 | 12,444.8 | 70,77.6 | |
Flavonoids | (+)-Catechin | 34,720 | 299.6 | 303.6 | 202.6 | 286.6 |
(−)-Epicatechin | 1213.2 | 895.8 | 774 | 922.4 | 777.4 | |
Rutin | 8281.8 | 11,652.4 | 7875.2 | 6510 | 10,681.6 | |
Hesperidin | 774.2 | NF | NF | NF | NF | |
Quercetin | 59.6 | 282.4 | 504.4 | 160.4 | 81 | |
Kaempherol | ULQ | 31.8 | 57.8 | ULQ ** | ULQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenova, Y.; Boycheva, P.; Dyankov, S.; Dzhakova, Z.; Dzhoglova, V.; Todorova, S.; Ivanova, S.; Slavov, I. Chemical Composition of Thymus Species from Bulgarian Flora. Diversity 2025, 17, 596. https://doi.org/10.3390/d17090596
Rosenova Y, Boycheva P, Dyankov S, Dzhakova Z, Dzhoglova V, Todorova S, Ivanova S, Slavov I. Chemical Composition of Thymus Species from Bulgarian Flora. Diversity. 2025; 17(9):596. https://doi.org/10.3390/d17090596
Chicago/Turabian StyleRosenova, Yoana, Petya Boycheva, Stanislav Dyankov, Zoya Dzhakova, Velina Dzhoglova, Stela Todorova, Stanislava Ivanova, and Iliya Slavov. 2025. "Chemical Composition of Thymus Species from Bulgarian Flora" Diversity 17, no. 9: 596. https://doi.org/10.3390/d17090596
APA StyleRosenova, Y., Boycheva, P., Dyankov, S., Dzhakova, Z., Dzhoglova, V., Todorova, S., Ivanova, S., & Slavov, I. (2025). Chemical Composition of Thymus Species from Bulgarian Flora. Diversity, 17(9), 596. https://doi.org/10.3390/d17090596